1
|
Niedzwiedz S, Schmidt C, Yang Y, Burgunter-Delamare B, Andersen S, Hildebrandt L, Pröfrock D, Thomas H, Zhang R, Damsgård B, Bischof K. Run-off impacts on Arctic kelp holobionts have strong implications on ecosystem functioning and bioeconomy. Sci Rep 2024; 14:30506. [PMID: 39681619 PMCID: PMC11649688 DOI: 10.1038/s41598-024-82287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Kelps (Laminariales, Phaeophyceae) are foundation species along Arctic rocky shores, providing the basis for complex ecosystems and supporting a high secondary production. Due to ongoing climate change glacial and terrestrial run-off are currently accelerating, drastically changing physical and chemical water column parameters, e.g., water transparency for photosynthetically active radiation or dissolved concentrations of (harmful) elements. We investigated the performance and functioning of Arctic kelp holobionts in response to run-off gradients, with a focus on the effect of altered element concentrations in the water column. We found that the kelp Saccharina latissima accumulates harmful elements (e.g., cadmium, mercury) originating from coastal run-off. As kelps are at the basis of the food web, this might lead to biomagnification, with potential consequences for high-latitude kelp maricultures. In contrast, the high biosorption potential of kelps might be advantageous in monitoring environmental pollution or potentially extracting dissolved rare earth elements. Further, we found that the relative abundances of several kelp-associated microbial taxa significantly responded to increasing run-off influence, changing the kelps functioning in the ecosystem, e.g., the holobionts nutritional value and elemental cycling. The responses of kelp holobionts to environmental changes imply cascading ecological and economic consequences for Arctic kelp ecosystems in future climate change scenarios.
Collapse
Affiliation(s)
- Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, 28359, Bremen, Germany.
| | - Claudia Schmidt
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26111, Oldenburg, Germany
- Department of Marine Carbon Cycles, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Yunlan Yang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518052, China
| | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | | | - Lars Hildebrandt
- Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Daniel Pröfrock
- Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Helmuth Thomas
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26111, Oldenburg, Germany
- Department of Marine Carbon Cycles, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518052, China
| | - Børge Damsgård
- The University Centre of Svalbard (UNIS), Longyearbyen, 9171, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
2
|
De la Cruz Gómez AG, Campos-García H, Mendoza GD, García-López JC, Álvarez-Fuentes G, Hernández-García PA, Jiménez JAR, Cifuentes-Lopez O, Relling AE, Lee-Rangel HA. Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs. Vet Sci 2024; 11:653. [PMID: 39728993 DOI: 10.3390/vetsci11120653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: Macrocystis pyrifera (Brown), Ulva spp. (Lettuce), Mazzaella spp. (Red) and their effect on species-specific modulations of the rumen microbiome. The macroalgae were characterized using GC-MS. Twelve Rambouillet lambs were randomly assigned to one of four experimental diets (n = 3 per treatment): (a) control diet (CD); (b) CD + 5 g of Red algae; (c) CD + 5 g of Brown algae; and (d) CD + 5 g of Lettuce algae. After the lambs ended their fattening phase, they donated ruminal fluid for DNA extraction and 16S rRNA gene V3 amplicon sequencing. Results: The tagged 16S rRNA amplicon sequencing and statistical analysis revealed that the dominant ruminal bacteria shared by all four sample groups belonged to phyla Firmicutes and Bacteroidota. However, the relative abundance of these bacterial groups was markedly affected by diet composition. In animals fed with macroalgae, the fibrinolytic and cellulolytic bacteria Selenomonas was found in the highest abundance. The diversity in chemical composition among macroalgae species introduces a range of bioactive compounds, particularly VOCs like anethole, beta-himachalene, and 4-ethylphenol, which demonstrate antimicrobial and fermentation-modulating properties.
Collapse
Affiliation(s)
- Adriana Guadalupe De la Cruz Gómez
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Huitzimengari Campos-García
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco 75460, Mexico
| | - German D Mendoza
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Juan Carlos García-López
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Gregorio Álvarez-Fuentes
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Pedro A Hernández-García
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Amecameca 56900, Mexico
| | - José Alejandro Roque Jiménez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Oswaldo Cifuentes-Lopez
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico
| |
Collapse
|
3
|
Younker IT, Molnar N, Scorza K, Weed R, Light SH, Pfister CA. Bacteria on the foundational kelp in kelp forest ecosystems: Insights from culturing, whole genome sequencing and metabolic assays. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13270. [PMID: 38778582 PMCID: PMC11112141 DOI: 10.1111/1758-2229.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
In coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia. Genome analyses of these isolates highlight metabolisms potentially beneficial to the host, such as B vitamin synthesis and nitrogen retention. Assays revealed that kelp-associated bacteria thrive on amino acids found in high concentrations in the ocean and in the kelp (glutamine and asparagine), generating ammonium that may facilitate host nitrogen acquisition. Multiple isolates have genes indicative of interactions with key elemental cycles in the ocean, including carbon, nitrogen and sulphur. We thus report a collection of kelp-associated microbial isolates that provide functional insight for the future study of kelp-microbe interactions.
Collapse
Affiliation(s)
- Isaac T. Younker
- Committee on MicrobiologyThe University of ChicagoChicagoIllinoisUSA
| | - Nichos Molnar
- The CollegeThe University of ChicagoChicagoIllinoisUSA
| | - Kaylie Scorza
- The CollegeThe University of ChicagoChicagoIllinoisUSA
| | - Roo Weed
- The Graduate Program in Biophysical SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Samuel H. Light
- Department of MicrobiologyThe University of ChicagoChicagoIllinoisUSA
| | | |
Collapse
|
4
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
5
|
King NG, Uribe R, Moore PJ, Earp HS, Gouraguine A, Hinostroza D, Perez-Matus A, Smith K, Smale DA. Multiscale Spatial Variability and Stability in the Structure and Diversity of Bacterial Communities Associated with the Kelp Eisenia cokeri in Peru. MICROBIAL ECOLOGY 2023; 86:2574-2582. [PMID: 37415044 DOI: 10.1007/s00248-023-02262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Ecological communities are structured by a range of processes that operate over a range of spatial scales. While our understanding of such biodiversity patterns in macro-communities is well studied, our understanding at the microbial level is still lacking. Bacteria can be free living or associated with host eukaryotes, forming part of a wider "microbiome," which is fundamental for host performance and health. For habitat forming foundation-species, host-bacteria relationships likely play disproportionate roles in mediating processes for the wider ecosystem. Here, we describe host-bacteria communities across multiple spatial scales (i.e., from 10s of m to 100s of km) in the understudied kelp, Eisenia cokeri, in Peru. We found that E. cokeri supports a distinct bacterial community compared to the surrounding seawater, but the structure of these communities varied markedly at the regional (~480 km), site (1-10 km), and individual (10s of m) scale. The marked regional-scale differences we observed may be driven by a range of processes, including temperature, upwelling intensity, or regional connectivity patterns. However, despite this variability, we observed consistency in the form of a persistent core community at the genus level. Here, the genera Arenicella, Blastopirellula, Granulosicoccus, and Litorimonas were found in >80% of samples and comprised ~53% of total sample abundance. These genera have been documented within bacterial communities associated with kelps and other seaweed species from around the world and may be important for host function and wider ecosystem health in general.
Collapse
Affiliation(s)
- Nathan G King
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK.
| | - Roberto Uribe
- Área de Macroalgas y Biodiversidad, Instituto del Mar del Perú - IMARPE, av. La Ribera # 805, Huanchaco, La Libertad, Perú
| | - Pippa J Moore
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Hannah S Earp
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
- Department of Life Science, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Adam Gouraguine
- Dove Marine Laboratory, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Diego Hinostroza
- Programa de Maestría en Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Perez-Matus
- Subtidal Ecology Laboratory (Subelab), Estación Costera de Investigaciones Marinas (ECIM), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114, -D, Santiago, Chile
| | - Kathryn Smith
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
6
|
Vos M. Accessory microbiomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37167086 DOI: 10.1099/mic.0.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In microbiome research, considerable effort has been invested in finding core microbiomes, which have been hypothesized to contain the species most important for host function. Much less attention has been paid to microbiome members that are present in only a subset of hosts. Such accessory microbiomes must in large part consist of species that have no effect on fitness, but some will have deleterious effects on fitness (pathogens), and it is also possible that some accessory microbiome members benefit an ecologically distinct subset of hosts. This short paper discusses what we know about accessory microbiomes, specifically by comparing it with the concept of accessory genomes.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter, Penryn Campus, TR10 9FE, Penryn, UK
| |
Collapse
|
7
|
Burgunter-Delamare B, Rousvoal S, Legeay E, Tanguy G, Fredriksen S, Boyen C, Dittami SM. The Saccharina latissima microbiome: Effects of region, season, and physiology. Front Microbiol 2023; 13:1050939. [PMID: 36687663 PMCID: PMC9858215 DOI: 10.3389/fmicb.2022.1050939] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Saccharina latissima is a canopy-forming species of brown algae and, as such, is considered an ecosystem engineer. Several populations of this alga are exploited worldwide, and a decrease in the abundance of S. latissima at its southern distributional range limits has been observed. Despite its economic and ecological interest, only a few data are available on the composition of microbiota associated with S. latissima and its role in algal physiologyn. Methods We studied the whole bacterial community composition associated with S. latissima samples from three locations (Brittany, Helgoland, and Skagerrak) by 16S metabarcoding analyses at different scales: algal blade part, regions, season (at one site), and algal physiologic state. Results and Discussion We have shown that the difference in bacterial composition is driven by factors of decreasing importance: (i) the algal tissues (apex/meristem), (ii) the geographical area, (iii) the seasons (at the Roscoff site), and (iv) the algal host's condition (healthy vs. symptoms). Overall, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia dominated the general bacterial communities. Almost all individuals hosted bacteria of the genus Granulosicoccus, accounting for 12% of the total sequences, and eight additional core genera were identified. Our results also highlight a microbial signature characteristic for algae in poor health independent of the disease symptoms. Thus, our study provides a comprehensive overview of the S. latissima microbiome, forming a basis for understanding holobiont functioning.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- CNRS, Sorbonne Université, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Roscoff, France,*Correspondence: Bertille Burgunter-Delamare,
| | - Sylvie Rousvoal
- CNRS, Sorbonne Université, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- FR2424 Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France
| | - Gwenn Tanguy
- FR2424 Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France
| | | | - Catherine Boyen
- CNRS, Sorbonne Université, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Roscoff, France,FR2424 Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France
| | - Simon M. Dittami
- CNRS, Sorbonne Université, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Roscoff, France,Simon M. Dittami,
| |
Collapse
|
8
|
Park J, Davis K, Lajoie G, Parfrey LW. Alternative approaches to identify core bacteria in Fucus distichus microbiome and assess their distribution and host-specificity. ENVIRONMENTAL MICROBIOME 2022; 17:55. [PMID: 36384808 PMCID: PMC9670562 DOI: 10.1186/s40793-022-00451-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Identifying meaningful ecological associations between host and components of the microbiome is challenging. This is especially true for hosts such as marine macroalgae where the taxonomic composition of the microbiome is highly diverse and variable in space and time. Identifying core taxa is one way forward but there are many methods and thresholds in use. This study leverages a large dataset of microbial communities associated with the widespread brown macroalga, Fucus distichus, across sites and years on one island in British Columbia, Canada. We compare three different methodological approaches to identify core taxa at the amplicon sequence variant (ASV) level from this dataset: (1) frequency analysis of taxa on F. distichus performed over the whole dataset, (2) indicator species analysis (IndVal) over the whole dataset that identifies frequent taxa that are enriched on F. distichus in comparison to the local environment, and (3) a two-step IndVal method that identifies taxa that are consistently enriched on F. distichus across sites and time points. We then investigated a F. distichus time-series dataset to see if those core taxa are seasonally consistent on another remote island in British Columbia, Canada. We then evaluate host-specificity of the identified F. distichus core ASVs using comparative data from 32 other macroalgal species sampled at one of the sites. RESULTS We show that a handful of core ASVs are consistently identified by both frequency analysis and IndVal approaches with alternative definitions, although no ASVs were always present on F. distichus and IndVal identified a diverse array of F. distichus indicator taxa across sites on Calvert Island in multiple years. Frequency analysis captured a broader suit of taxa, while IndVal was better at identifying host-specific microbes. Finally, two-step IndVal identified hundreds of indicator ASVs for particular sites/timepoints but only 12 that were indicators in a majority (> 6 out of 11) of sites/timepoints. Ten of these ASVs were also indicators on Quadra Island, 250 km away. Many F. distichus-core ASVs are generally found on multiple macroalgal species, while a few ASVs are highly specific to F. distichus. CONCLUSIONS Different methodological approaches with variable set thresholds influence core identification, but a handful of core taxa are apparently identifiable as they are widespread and temporally associated with F. distichus and enriched in comparison to the environment. Moreover, we show that many of these core ASVs of F. distichus are found on multiple macroalgal hosts, indicating that most occupy a macroalgal generalist niche rather than forming highly specialized associations with F. distichus. Further studies should test whether macroalgal generalists or specialists are more likely to engage in biologically important exchanges with host.
Collapse
Affiliation(s)
- Jungsoo Park
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Katherine Davis
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Geneviève Lajoie
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC Canada
| | - Laura Wegener Parfrey
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
- Department of Zoology, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|