1
|
Tarakanov R, Ignatov A, Evseev P, Chebanenko S, Ignatyeva I, Miroshnikov K, Dzhalilov F. Development of a multiplex real-time PCR method for the detection of Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens in soybean seeds. BRAZ J BIOL 2023; 83:e275505. [PMID: 37909592 DOI: 10.1590/1519-6984.275505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 11/03/2023] Open
Abstract
Multiplex real-time PCR with TaqMan® probes has been developed for the simultaneous detection of soybean pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. The method specificity has been confirmed using 25 strains of target bacteria and 18 strains of other bacteria common to soybean seeds as endophytes. The multiplex real-time PCR developed has been shown to have high sensitivity - a positive result was achieved at 0.01 ng/µl of DNA for both target organisms, and at 100 CFU/ml of bacteria in soybean seed homogenate. The robustness of the multiplex real-time PCR developed has been verified by the detection of the pathogens in 25 commercial seed stocks, in comparison with previously published PCR protocols. In all tests, three seed stocks were positive and 22 were negative. The multiplex real-time PCR can be applied in diagnostic practice for the simultaneous detection of two important pathogens of leguminous plants.
Collapse
Affiliation(s)
- R Tarakanov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - A Ignatov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- People's Friendship University of Russia - RUDN University, Moscow, Russia
| | - P Evseev
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S Chebanenko
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - I Ignatyeva
- All-Russian Plant Quarantine Centre, Moscow region, Russia
| | - K Miroshnikov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - F Dzhalilov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| |
Collapse
|
2
|
Price-Christenson G, Yannarell A. Use of Ecological Theory to Understand the Efficacy and Mechanisms of Multistrain Biological Control. PHYTOPATHOLOGY 2023; 113:381-389. [PMID: 36656290 DOI: 10.1094/phyto-04-22-0115-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Since the 1970s, over 6,500 articles have been published about microbial biocontrols and over 200 microbial isolates have been registered for commercial use. However, many of these solutions have seen limited use due to limitations with their in-field efficacy. Even when multiple biocontrol agents are combined to create multistrain biocontrols, the resulting combinations can be less effective than the individual agents. One likely contributor is due to how multistrain microbial biocontrols are created. Multistrain microbial biocontrols are generally produced under controlled settings that are divorced from the ecological conditions they will need to function under. Traditionally, researchers culture, identify, and screen isolates for pathogen suppression traits. Then these researchers will combine the most promising isolates in an attempt to create more effective solutions. This approach, while effective for identifying suppressive isolates and determining the mechanisms of pathogen suppression, does not take into consideration the variability of natural environments, nor the complex ecological interactions that occur between plant hosts, pathogens, and component biocontrol agents, thus limiting the range of circumstances that these multistrain solutions can reliably succeed. To address these limitations, we suggest the application of relevant ecological theory to determine which isolates should be combined to create more reliable multistrain biocontrols. In this synthesis, we build on prior work focused on addressing plant pathogens through the use of multistrain microbial biocontrols, but we argue that viewing this work through the lens of ecology reveals key "design principles" from natural communities that are stable, functioning, and comprise multiple species.
Collapse
Affiliation(s)
- Gabriel Price-Christenson
- Department of Agricultural Microbiology, Earnest Agriculture, Rantoul, IL 61866
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Anthony Yannarell
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
3
|
Ran J, Wu Y, Zhang B, Su Y, Lu N, Li Y, Liang X, Zhou H, Shi J. Paenibacillus polymyxa Antagonism towards Fusarium: Identification and Optimisation of Antibiotic Production. Toxins (Basel) 2023; 15:toxins15020138. [PMID: 36828452 PMCID: PMC9963053 DOI: 10.3390/toxins15020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
An antibiotic produced by Paenibacillus polymyxa 7F1 was studied. The 7F1 strain was isolated from the rhizosphere of a wheat field. Response surface methodology was used to optimize the physicochemical parameters. The strain showed broad-spectrum activity against several plant pathogens. Identification of the strain was realized based on 16s rRNA gene and gyrB gene sequencing. The antibiotic was optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The suitable antibiotic production conditions were optimized using the one-factor-at-a-time method. The individual and interaction effects of three independent variables: culture temperature, initial pH, and culture time, were optimized by Box-Behnken design. The 16SrRNA gene sequence (1239 nucleotides) and gyrB gene (1111 nucleotides) were determined for strain 7F1 and shared the highest identities to those of Paenibacillus polymyxa. The results showed the optimal fermentation conditions for antibiotics produced by Paenibacillus polymyxa 7F1 were a culture temperature of 38 °C, initial pH of 8.0, and culture time of 8 h. The antibiotics produced by Paenibacillus polymyxa 7F1 include lipopeptides such as iturin A and surfactin. The results provide a theoretical basis for the development of bacteriostatic biological agents and the control of mycotoxins.
Collapse
Affiliation(s)
- Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: (J.R.); (N.L.)
| | - Youzhi Wu
- School of Food and Drug, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Bo Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yiwei Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ninghai Lu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: (J.R.); (N.L.)
| | - Yongchao Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haixu Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jianrong Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
Tarakanov RI, Dzhalilov FSU. Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2989. [PMID: 36365442 PMCID: PMC9655289 DOI: 10.3390/plants11212989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of environmentally friendly approaches is encouraged. In this work, purified essential oils (EOs) from 19 plant species and total aqueous and ethanolic plant extracts (PEs) from 19 plant species were tested in vitro to observe their antimicrobial activity against Psg and Cff (by agar diffusion and broth microdilution method). Tested EOs and PEs produced significant bacterial growth inhibition with technologically acceptable MIC and MBC values. Non-phytotoxic concentrations for Chinese cinnamon and Oregano essential oils and leather bergenia ethanolic extract, which previously showed the lowest MBC values, were determined. Testing of these substances with artificial infection of soybean plants has shown that the essential oils of Chinese cinnamon and oregano have the maximum efficiency against Psg and Cff. Treatment of leaves and seeds previously infected with phytopathogens with these essential oils showed that the biological effectiveness of leaf treatments was 80.6-77.5% and 86.9-54.6%, respectively, for Psg and Cff. GC-MS and GC-FID analyzes showed that the major compounds were 5-Methyl-3-methylenedihydro-2(3H)-furanone (20.32%) in leather bergenia ethanolic extract, cinnamaldehyde (84.25%) in Chinese cinnamon essential oil and carvacrol (62.32%) in oregano essential oil.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| |
Collapse
|
5
|
Díaz-Cruz GA, Cassone BJ. Changes in the phyllosphere and rhizosphere microbial communities of soybean in the presence of pathogens. FEMS Microbiol Ecol 2022; 98:fiac022. [PMID: 35195242 DOI: 10.1093/femsec/fiac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Soybean (Glycine max L.) is host to an array of foliar- and root-infecting pathogens that can cause significant yield losses. To provide insights into the roles of microorganisms in disease development, we evaluated the bacterial and fungal communities associated with the soybean rhizosphere and phyllosphere. For this, leaf and soil samples of healthy, Phytophthora sojae-infected and Septoria glycines-infected plants were sampled at three stages during the production cycle, and then subjected to 16S and Internal Transcribed Spacer (ITS) amplicon sequencing. The results indicated that biotic stresses did not have a significant impact on species richness and evenness regardless of growth stage. However, the structure and composition of soybean microbial communities were dramatically altered by biotic stresses, particularly for the fungal phyllosphere. Additionally, we cataloged a variety of microbial genera that were altered by biotic stresses and their associations with other genera, which could serve as biological indicators for disease development. In terms of soybean development, the rhizosphere and phyllosphere had distinct microbial communities, with the fungal phyllosphere most influenced by growth stage. Overall, this study characterized the phyllosphere and rhizosphere microbial communities of soybean, and described the impact of pathogen infection and plant development in shaping these bacterial and fungal communities.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| |
Collapse
|
6
|
Sui Y, Zhao Q, Wang Z, Liu J, Jiang M, Yue J, Lan J, Liu J, Liao Q, Wang Q, Yang Q, Zhang H. A Comparative Analysis of the Microbiome of Kiwifruit at Harvest Under Open-Field and Rain-Shelter Cultivation Systems. Front Microbiol 2021; 12:757719. [PMID: 34659192 PMCID: PMC8515128 DOI: 10.3389/fmicb.2021.757719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
The composition of microbial communities can directly affect fruit quality, health status, and storability. The present study characterized the epiphytes and endophytes of “Hongyang” and “Cuiyu” kiwifruit at harvest under grown under open-field (OF) and rain-shelter (RS) cultivation systems. Disease incidence in kiwifruit was significantly lower (p < 0.05) under the RS system than it was under the OF system. High-throughput sequencing [16S V3-V4 ribosomal region and the fungal internal transcribed spacer (ITS2)] was conducted to compare the composition of the epiphytic and endophytic microbial community of kiwifruit under the two cultivation systems. Results indicated that the abundance of Actinobacteria, Bacteroidetes, Enterobacteriales, Acetobacterales, Sphingomonas, Pseudomonas, and Sphingobacterium was higher under the RS system, relative to the OF system, while the abundance of Capnodiales, Hypocreales, Vishniacozyma, and Plectosphaerella was also higher under the RS system. Some of these bacterial and fungal taxa have been reported to as act as biocontrol agents and reduce disease incidence. Notably, the α-diversity of the epiphytic bacterial and fungal communities on kiwifruit was higher under RS cultivation. In summary, RS cultivation reduced natural disease incidence in kiwifruit, which may be partially attributed to differences in the structure and composition of the microbial community present in and on kiwifruit.
Collapse
Affiliation(s)
- Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Engineering Research Center of Plant Growth Regulators/Crop Chemical Control Research Center, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Junyang Yue
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jianbin Lan
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Gaube P, Junker RR, Keller A. Changes amid constancy: Flower and leaf microbiomes along land use gradients and between bioregions. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front Microbiol 2020; 11:1619. [PMID: 32760378 PMCID: PMC7372246 DOI: 10.3389/fmicb.2020.01619] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.
Collapse
Affiliation(s)
- Marie Legein
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dieter Vandenheuvel
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Babette Muyshondt
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Laboratory for Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Abd-El-Khair H. Biological Control of Phyto-pathogenic Bacteria. COTTAGE INDUSTRY OF BIOCONTROL AGENTS AND THEIR APPLICATIONS 2020:299-336. [DOI: 10.1007/978-3-030-33161-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Li JZ, Zhou LY, Peng YL, Fan J. Pseudomonas bacteriocin syringacin M released upon desiccation suppresses the growth of sensitive bacteria in plant necrotic lesions. Microb Biotechnol 2019; 13:134-147. [PMID: 30672132 PMCID: PMC6922522 DOI: 10.1111/1751-7915.13367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Bacteriocins are regarded as important factors mediating microbial interactions, but their exact role in community ecology largely remains to be elucidated. Here, we report the characterization of a mutant strain, derived from Pseudomonas syringae pv. tomato DC3000 (Pst), that was incapable of growing in plant extracts and causing disease. Results showed that deficiency in a previously unannotated gene saxE led to the sensitivity of the mutant to Ca2+ in leaf extracts. Transposon insertions in the bacteriocin gene syrM, adjacent to saxE, fully rescued the bacterial virulence and growth of the ΔsaxE mutant in plant extracts, indicating that syrM‐saxE encode a pair of bacteriocin immunity proteins in Pst. To investigate whether the syrM‐saxE system conferred any advantage to Pst in competition with other SyrM‐sensitive pathovars, we compared the growth of a SyrM‐sensitive strain co‐inoculated with Pst strains with or without the syrM gene and observed a significant syrM‐dependent growth reduction of the sensitive bacteria on plate and in lesion tissues upon desiccation–rehydration treatment. These findings reveal an important biological role of SyrM‐like bacteriocins and help to understand the complex strategies used by P. syringae in adaptation to the phyllosphere niche in the context of plant disease.
Collapse
Affiliation(s)
- Jun-Zhou Li
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Zhou
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Fan
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.,Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Purahong W, Orrù L, Donati I, Perpetuini G, Cellini A, Lamontanara A, Michelotti V, Tacconi G, Spinelli F. Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1563. [PMID: 30464766 PMCID: PMC6234494 DOI: 10.3389/fpls.2018.01563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/05/2018] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker, the most devastating disease of kiwifruit vines. Before entering the host tissues, this pathogen has an epiphytic growth phase on kiwifruit flowers and leaves, thus the ecological interactions within epiphytic bacterial community may greatly influence the onset of the infection process. The bacterial community associated to the two most important cultivated kiwifruit species, Actinidia chinensis and Actinidia deliciosa, was described both on flowers and leaves using Illumina massive parallel sequencing of the V3 and V4 variable regions of the 16S rRNA gene. In addition, the effect of plant infection by Psa on the epiphytic bacterial community structure and biodiversity was investigated. Psa infection affected the phyllosphere microbiome structures in both species, however, its impact was more pronounced on A. deliciosa leaves, where a drastic drop in microbial biodiversity was observed. Furthermore, we also showed that Psa was always present in syndemic association with Pseudomonas syringae pv. syringae and Pseudomonas viridiflava, two other kiwifruit pathogens, suggesting the establishment of a pathogenic consortium leading to a higher pathogenesis capacity. Finally, the analyses of the dynamics of bacterial populations provided useful information for the screening and selection of potential biocontrol agents against Psa.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, Helmholtz Center for Environmental Research - UFZ, Halle, Germany
| | - Luigi Orrù
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Giorgia Perpetuini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | | | - Vania Michelotti
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Gianni Tacconi
- CREA Research Centre for Genomics and Bioinformatics – Fiorenzuola d’Arda, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Straub C, Colombi E, Li L, Huang H, Templeton MD, McCann HC, Rainey PB. The ecological genetics ofPseudomonas syringaefrom kiwifruit leaves. Environ Microbiol 2018. [DOI: 10.1111/1462-2920.14092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Straub
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Elena Colombi
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
| | - Hongwen Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou People's Republic of China
| | | | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
- Max Planck Institute for Evolutionary Biology, Department of Microbial Population BiologyPlön Germany
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris Tech), Laboratoire de Génétique de l'EvolutionParis France
| |
Collapse
|
13
|
|
14
|
Martinez-Beringola M, Salto T, Vázquez G, Larena I, Melgarejo P, De Cal A. Penicillium oxalicum
reduces the number of cysts and juveniles of potato cyst nematodes. J Appl Microbiol 2013; 115:199-206. [DOI: 10.1111/jam.12213] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Affiliation(s)
| | - T. Salto
- Department of Plant Protection; INIA; Madrid Spain
| | - G. Vázquez
- Department of Plant Protection; INIA; Madrid Spain
| | - I. Larena
- Department of Plant Protection; INIA; Madrid Spain
| | - P. Melgarejo
- Department of Plant Protection; INIA; Madrid Spain
| | - A. De Cal
- Department of Plant Protection; INIA; Madrid Spain
| |
Collapse
|
15
|
Sammer UF, Reiher K, Spiteller D, Wensing A, Völksch B. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. Microbiologyopen 2012; 1:438-49. [PMID: 23233458 PMCID: PMC3535389 DOI: 10.1002/mbo3.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/09/2012] [Accepted: 09/12/2012] [Indexed: 11/08/2022] Open
Abstract
The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range.
Collapse
Affiliation(s)
- Ulrike F Sammer
- Institute for Microbiology, Microbial Communication, University of Jena, Neugasse 25, D-07743, Jena, Germany.
| | | | | | | | | |
Collapse
|
16
|
Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 2010; 76:2704-11. [PMID: 20208028 PMCID: PMC2863448 DOI: 10.1128/aem.02979-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
The use of naturally occurring microbial antagonists to suppress plant diseases offers a favorable alternative to classical methods of plant protection. The soybean epiphyte Pseudomonas syringae pv. syringae strain 22d/93 shows great potential for controlling P. syringae pv. glycinea, the causal agent of bacterial blight of soybean. Its activity against P. syringae pv. glycinea is highly reproducible even in field trials, and the suppression mechanisms involved are of special interest. In this work we demonstrated that P. syringae pv. syringae 22d/93 produced a significantly larger amount of siderophores than the pathogen P. syringae pv. glycinea produced. While P. syringae pv. syringae 22d/93 and P. syringae pv. glycinea produce the same siderophores, achromobactin and pyoverdin, the regulation of siderophore biosynthesis in the former organism is very different from that in the latter organism. The epiphytic fitness of P. syringae pv. syringae 22d/93 mutants defective in siderophore biosynthesis was determined following spray inoculation of soybean leaves. The population size of the siderophore-negative mutant P. syringae pv. syringae strain 22d/93DeltaSid was 2 orders of magnitude lower than that of the wild type 10 days after inoculation. The growth deficiency was compensated for when wound inoculation was used, indicating the availability of iron in the presence of small lesions on the leaves. Our results suggest that siderophore production has an indirect effect on the biocontrol activity of P. syringae pv. syringae 22d/93. Although siderophore-defective mutants of P. syringae pv. syringae 22d/93 still suppressed development of bacterial blight caused by P. syringae pv. glycinea, siderophore production enhanced the epiphytic fitness and thus the competitiveness of the antagonist.
Collapse
Affiliation(s)
- Annette Wensing
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Sascha D. Braun
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Petra Büttner
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Dominique Expert
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Beate Völksch
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Matthias S. Ullrich
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Helge Weingart
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| |
Collapse
|
17
|
De Cal A, Larena I, Liñán M, Torres R, Lamarca N, Usall J, Domenichini P, Bellini A, de Eribe XO, Melgarejo P. Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. J Appl Microbiol 2010; 106:592-605. [PMID: 19200324 DOI: 10.1111/j.1365-2672.2008.04030.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the population dynamics of Epicoccum nigrum on peaches and nectarines and to enhance its colonization on fruit surfaces to improve its biocontrol efficacy against brown rot. METHODS AND RESULTS Twelve surveys were performed to study E. nigrum populations and their effect on the number of the pathogenic Monilinia spp. conidia in peach orchards in Spain and Italy between 2002 and 2005. Fresh conidia and five different formulations of E. nigrum conidia were applied three to six times to peach and nectarine trees from full flowering to harvest. The size of the E. nigrum populations was determined from the number of colony-forming units and conidial numbers per flower or fruit. Treatment with all conidial formulations increased the size of the indigenous conidial population on peach surfaces. CONCLUSIONS Formulations of E. nigrum having high viability are most effective against conidia of the pathogen when applied at pit hardening and during the month immediately before fruit harvest. SIGNIFICANCE AND IMPACT OF THE STUDY Application of an E. nigrum conidial formulation decreased the number of conidia of Monilinia spp. on fruit surfaces during the growing season to the same extent as fungicides.
Collapse
Affiliation(s)
- A De Cal
- Department of Plant Protection, INIA, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Braun SD, Völksch B, Nüske J, Spiteller D. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem 2008; 9:1913-20. [PMID: 18655083 DOI: 10.1002/cbic.200800080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Indexed: 11/10/2022]
Abstract
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.
Collapse
Affiliation(s)
- Sascha D Braun
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, Neugasse 25, 07743 Jena, Germany
| | | | | | | |
Collapse
|
19
|
Guijarro B, Melgarejo P, Torres R, Lamarca N, Usall J, De Cal A. Penicillium frequentans population dynamics on peach fruits after its applications against brown rot in orchards. J Appl Microbiol 2008; 104:659-71. [DOI: 10.1111/j.1365-2672.2007.03596.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker PAHM. Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 2003; 69:3110-8. [PMID: 12788705 PMCID: PMC161518 DOI: 10.1128/aem.69.6.3110-3118.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the impact of genetically modified, antibiotic-producing rhizobacteria on the indigenous microbial community, Pseudomonas putida WCS358r and two transgenic derivatives were introduced as a seed coating into the rhizosphere of wheat in two consecutive years (1999 and 2000) in the same field plots. The two genetically modified microorganisms (GMMs), WCS358r::phz and WCS358r::phl, constitutively produced phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (DAPG), respectively. The level of introduced bacteria in all treatments decreased from 10(7) CFU per g of roots soon after sowing to less than 10(2) CFU per g after harvest 132 days after sowing. The phz and phl genes remained stable in the chromosome of WCS358r. The amount of PCA produced in the wheat rhizosphere by WCS358r::phz was about 40 ng/g of roots after the first application in 1999. The DAPG-producing GMMs caused a transient shift in the indigenous bacterial and fungal microflora in 1999, as determined by amplified ribosomal DNA restriction analysis. However, after the second application of the GMMs in 2000, no shifts in the bacterial or fungal microflora were detected. To evaluate the importance of the effects induced by the GMMs, these effects were compared with those induced by crop rotation by planting wheat in 1999 followed by potatoes in 2000. No effect of rotation on the microbial community structure was detected. In 2000 all bacteria had a positive effect on plant growth, supposedly due to suppression of deleterious microorganisms. Our research suggests that the natural variability of microbial communities can surpass the effects of GMMs.
Collapse
Affiliation(s)
- M Viebahn
- Faculty of Biology, Section of Phytopathology, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
22
|
Wilson M, Campbell HL, Ji P, Jones JB, Cuppels DA. Biological control of bacterial speck of tomato under field conditions at several locations in north america. PHYTOPATHOLOGY 2002; 92:1284-1292. [PMID: 18943882 DOI: 10.1094/phyto.2002.92.12.1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, continues to be a problem for tomato growers worldwide. A collection of nonpathogenic bacteria from tomato leaves plus P. syringae strains TLP2 and Cit7, P. fluorescens strain A506, and P. syringae pv. tomato DC3000 hrp mutants were examined in a greenhouse bioassay for the ability to reduce foliar bacterial speck disease severity. While several of these strains significantly reduced disease severity, P. syringae Cit7 was the most effective, providing a mean level of disease reduction of 78% under greenhouse conditions. The P. syringae pv. tomato DC3000 hrpA, hrpH, and hrpS mutants also significantly reduced speck severity under greenhouse conditions. The strains with the greatest efficacy under greenhouse conditions were tested for the ability to reduce bacterial speck under field conditions at locations in Alabama, Florida, and Ontario, Canada. P. syringae Cit7 was the most effective strain, providing a mean level of disease reduction of 28% over 10 different field experiments. P. fluorescens A506, which is commercially available as Blight-Ban A506, provided a mean level of disease reduction of 18% over nine different field experiments. While neither P. syringae Cit7 nor P. fluorescens A506 can be integrated with copper bactericides due to their copper sensitivity, there exist some potential for integrating these biological control agents with "plant activators", including Actigard. Of the P. syringae pv. tomato DC3000 hrp mutants tested, only the hrpS mutant reduced speck severity significantly under field conditions.
Collapse
|
23
|
Abstract
Aerial plant surfaces harbor large numbers of microbes, some of which are deleterious to plants whereas others are benign or beneficial. Commercial formulations of bacteria antagonistic to plant pathogenic microbes and ice nucleation active bacteria have been utilized as an environmentally safe method to manage plant disease and to prevent frost damage. Molecular genetic tools, microscopic examination and whole-cell bacterial biosensors have provided extensive information on these microbes, their complex associations and their habitat. The aerial habitat influenced by plants, termed the phyllosphere, is particularly amenable to studies of microbial ecology and the information gained should lead to more effective means of plant protection.
Collapse
Affiliation(s)
- Steven E Lindow
- University of California, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California 94720, USA
| | | |
Collapse
|
24
|
Bashan Y, De-Bashan LE. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 2002; 68:2637-43. [PMID: 12039714 PMCID: PMC123946 DOI: 10.1128/aem.68.6.2637-2643.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 02/27/2002] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology, The Center for Biological Research of the Northwest, La Paz, Mexico
| | | |
Collapse
|