1
|
Temussi PA, Martin SR, Pastore A. Life and death of Yfh1: how cool is cold denaturation. Q Rev Biophys 2025; 58:e2. [PMID: 39801016 DOI: 10.1017/s0033583524000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce ad hoc destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability. The present review aims at recapitulating all the open questions that Yfh1 has helped to address, including understanding the differences and commonalities of the cold, heat and pressure unfolded states. This protein thus offers a unique tool for studying aspects of protein stability so far been considered difficult to assess and provides important guidelines that could allow the identification of other similar systems.
Collapse
Affiliation(s)
| | | | - Annalisa Pastore
- Elettra Sincrotrone Trieste, Italy
- The Wohl Institute, King's College London, London, UK
| |
Collapse
|
2
|
Wang G. Cold unfolding of heat-responsive TRPV3. RESEARCH SQUARE 2024:rs.3.rs-4285061. [PMID: 38746116 PMCID: PMC11092857 DOI: 10.21203/rs.3.rs-4285061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The homotetrameric thermosensitive transient receptor potential vanilloid 1-4 (TRPV1-4) channels in sensory neurons are strongly responsive to heat stimuli. However, their cold activations have not been reported in line with the nonzero heat capacity difference during heat or cold unfolding transitions. Here, along with the experimental examinations of the predicted ring size changes in different domains against the central pore during channel gating at various temperatures, the K169A mutant of reduced human TRPV3 was first found to be activated and inactivated by cold below 42°C. Further thermoring analyses revealed distinct heat and cold unfolding pathways, which resulted in different protein thermostabilities. Thus, both cold and heat unfolding transitions of thermosensitive TRPV1-4 channels may exist once a mutation destabilizes the closed state.
Collapse
|
3
|
Walker EJ, Hamill CJ, Crean R, Connolly MS, Warrender AK, Kraakman KL, Prentice EJ, Steyn-Ross A, Steyn-Ross M, Pudney CR, van der Kamp MW, Schipper LA, Mulholland AJ, Arcus VL. Cooperative Conformational Transitions Underpin the Activation Heat Capacity in the Temperature Dependence of Enzyme Catalysis. ACS Catal 2024; 14:4379-4394. [PMID: 38633402 PMCID: PMC11020164 DOI: 10.1021/acscatal.3c05584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Many enzymes display non-Arrhenius behavior with curved Arrhenius plots in the absence of denaturation. There has been significant debate about the origin of this behavior and recently the role of the activation heat capacity (ΔCP⧧) has been widely discussed. If enzyme-catalyzed reactions occur with appreciable negative values of ΔCP⧧ (arising from narrowing of the conformational space along the reaction coordinate), then curved Arrhenius plots are a consequence. To investigate these phenomena in detail, we have collected high precision temperature-rate data over a wide temperature interval for a model glycosidase enzyme MalL, and a series of mutants that change the temperature-dependence of the enzyme-catalyzed rate. We use these data to test a range of models including macromolecular rate theory (MMRT) and an equilibrium model. In addition, we have performed extensive molecular dynamics (MD) simulations to characterize the conformational landscape traversed by MalL in the enzyme-substrate complex and an enzyme-transition state complex. We have crystallized the enzyme in a transition state-like conformation in the absence of a ligand and determined an X-ray crystal structure at very high resolution (1.10 Å). We show (using simulation) that this enzyme-transition state conformation has a more restricted conformational landscape than the wildtype enzyme. We coin the term "transition state-like conformation (TLC)" to apply to this state of the enzyme. Together, these results imply a cooperative conformational transition between an enzyme-substrate conformation (ES) and a transition-state-like conformation (TLC) that precedes the chemical step. We present a two-state model as an extension of MMRT (MMRT-2S) that describes the data along with a convenient approximation with linear temperature dependence of the activation heat capacity (MMRT-1L) that can be used where fewer data points are available. Our model rationalizes disparate behavior seen for MalL and previous results for a thermophilic alcohol dehydrogenase and is consistent with a raft of data for other enzymes. Our model can be used to characterize the conformational changes required for enzyme catalysis and provides insights into the role of cooperative conformational changes in transition state stabilization that are accompanied by changes in heat capacity for the system along the reaction coordinate. TLCs are likely to be of wide importance in understanding the temperature dependence of enzyme activity and other aspects of enzyme catalysis.
Collapse
Affiliation(s)
- Emma J. Walker
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Carlin J. Hamill
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Rory Crean
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Michael S. Connolly
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Annmaree K. Warrender
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Kirsty L. Kraakman
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Erica J. Prentice
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | | | - Moira Steyn-Ross
- School
of Engineering, University of Waikato, Hamilton 3214, New Zealand
| | - Christopher R. Pudney
- Department
of Biology and Biochemistry, Centre for Biosensors, Bioelectronics
and Biodevices, University of Bath, Bath ST16 2TB, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Louis A. Schipper
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry,
University of Bristol, Bristol BS8 1TS, U.K.
| | - Vickery L. Arcus
- Te
Aka Ma̅tuatua School of Science, University
of Waikato, Hamilton 3214, New Zealand
| |
Collapse
|
4
|
Pastore A, Temussi PA. Unfolding under Pressure: An NMR Perspective. Chembiochem 2023; 24:e202300164. [PMID: 37154795 DOI: 10.1002/cbic.202300164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
This review aims to analyse the role of solution nuclear magnetic resonance spectroscopy in pressure-induced in vitro studies of protein unfolding. Although this transition has been neglected for many years because of technical difficulties, it provides important information about the forces that keep protein structure together. We first analyse what pressure unfolding is, then provide a critical overview of how NMR spectroscopy has contributed to the field and evaluate the observables used in these studies. Finally, we discuss the commonalities and differences between pressure-, cold- and heat-induced unfolding. We conclude that, despite specific peculiarities, in both cold and pressure denaturation the important contribution of the state of hydration of nonpolar side chains is a major factor that determines the pressure dependence of the conformational stability of proteins.
Collapse
Affiliation(s)
- Annalisa Pastore
- European Synchrotron Radiation Facilities, 71 Ave des Martyrs, 38000, Grenoble, France
- The Wohl Institute, King's College London, 5 Cutcombe Rd, SE59RT, London, UK
| | | |
Collapse
|
5
|
Félix SS, Laurents DV, Oroz J, Cabrita EJ. Fused in sarcoma undergoes cold denaturation: Implications for phase separation. Protein Sci 2023; 32:e4521. [PMID: 36453011 PMCID: PMC9793971 DOI: 10.1002/pro.4521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The mediation of liquid-liquid phase separation (LLPS) for fused in sarcoma (FUS) protein is generally attributed to the low-complexity, disordered domains and is enhanced at low temperature. The role of FUS folded domains on the LLPS process remains relatively unknown since most studies are mainly based on fragmented FUS domains. Here, we investigate the effect of metabolites on full-length (FL) FUS LLPS using turbidity assays and differential interference contrast (DIC) microscopy, and explore the behavior of the folded domains by nuclear magnetic resonance (NMR) spectroscopy. FL FUS LLPS is maximal at low concentrations of glucose and glutamate, moderate concentrations of NaCl, Zn2+ , and Ca2+ and at the isoelectric pH. The FUS RNA recognition motif (RRM) and zinc-finger (ZnF) domains are found to undergo cold denaturation above 0°C at a temperature that is determined by the conformational stability of the ZnF domain. Cold unfolding exposes buried nonpolar residues that can participate in LLPS-promoting hydrophobic interactions. Therefore, these findings constitute the first evidence that FUS globular domains may have an active role in LLPS under cold stress conditions and in the assembly of stress granules, providing further insight into the environmental regulation of LLPS.
Collapse
Affiliation(s)
- Sara S. Félix
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | | | - Javier Oroz
- Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | - Eurico J. Cabrita
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
6
|
Pastore A, Temussi PA. Crowding revisited: Open questions and future perspectives. Trends Biochem Sci 2022; 47:1048-1058. [PMID: 35691783 DOI: 10.1016/j.tibs.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Although biophysical studies have traditionally been performed in diluted solutions, it was pointed out in the late 1990s that the cellular milieu contains several other macromolecules, creating a condition of molecular crowding. How crowding affects protein stability is an important question heatedly discussed over the past 20 years. Theoretical estimations have suggested a 5-20°C effect of fold stabilisation. This estimate, however, is at variance with what has been verified experimentally that proposes only a limited increase of stability, opening the question whether some of the assumptions taken for granted should be reconsidered. The present review critically analyses the causes of this discrepancy and discusses the limitations and implications of the current concept of crowding.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| |
Collapse
|
7
|
Bitonti A, Puglisi R, Meli M, Martin SR, Colombo G, Temussi PA, Pastore A. Recipes for Inducing Cold Denaturation in an Otherwise Stable Protein. J Am Chem Soc 2022; 144:7198-7207. [PMID: 35427450 PMCID: PMC9052743 DOI: 10.1021/jacs.1c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although cold denaturation
is a fundamental phenomenon common to
all proteins, it can only be observed in a handful of cases where
it occurs at temperatures above the freezing point of water. Understanding
the mechanisms that determine cold denaturation and the rules that
permit its observation is an important challenge. A way to approach
them is to be able to induce cold denaturation in an otherwise stable
protein by means of mutations. Here, we studied CyaY, a relatively
stable bacterial protein with no detectable cold denaturation and
a high melting temperature of 54 °C. We have characterized for
years the yeast orthologue of CyaY, Yfh1, a protein that undergoes
cold and heat denaturation at 5 and 35 °C, respectively. We demonstrate
that, by transferring to CyaY the lessons learnt from Yfh1, we can
induce cold denaturation by introducing a restricted number of carefully
designed mutations aimed at destabilizing the overall fold and inducing
electrostatic frustration. We used molecular dynamics simulations
to rationalize our findings and demonstrate the individual effects
observed experimentally with the various mutants. Our results constitute
the first example of rationally designed cold denaturation and demonstrate
the importance of electrostatic frustration on the mechanism of cold
denaturation.
Collapse
Affiliation(s)
- Angela Bitonti
- Department of Molecular Medicine, University of Pavia, Via C Forlanini 6, 27100 Pavia, Italy
| | - Rita Puglisi
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| | - Massimiliano Meli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Stephen R. Martin
- Structural Biology Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, Pavia 27100, Italy
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King’s College London, London SE5 9RT, United Kingdom
| |
Collapse
|
8
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|
10
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Abstract
The natural function of many proteins depends on their ability to switch their conformation driven by environmental changes. In this work, we present a small, monomeric β-sheet peptide that switches between a molten globule and a folded state through Zn(II) binding. The solvent-exposed hydrophobic core on the β-sheet surface was substituted by a His3-site, whereas the internal hydrophobic core was left intact. Zn(II) is specifically recognized by the peptide relative to other divalent metal ions, binds in the lower micromolar range, and can be removed and re-added without denaturation of the peptide. In addition, the peptide is fully pH-switchable, has a pKa of about 6, and survives several cycles of acidification and neutralization. In-depth structural characterization of the switch was achieved by concerted application of circular dichroism (CD) and multinuclear NMR spectroscopy. Thus, this study represents a viable approach toward a globular β-sheet Zn(II) mini-receptor prototype.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
13
|
Lameiras P, Nuzillard JM. Tailoring the nuclear Overhauser effect for the study of small and medium-sized molecules by solvent viscosity manipulation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:1-50. [PMID: 34078536 DOI: 10.1016/j.pnmrs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The nuclear Overhauser effect (NOE) is a consequence of cross-relaxation between nuclear spins mediated by dipolar coupling. Its sensitivity to internuclear distances has made it an increasingly important tool for the determination of through-space atom proximity relationships within molecules of sizes ranging from the smallest systems to large biopolymers. With the support of sophisticated FT-NMR techniques, the NOE plays an essential role in structure elucidation, conformational and dynamic investigations in liquid-state NMR. The efficiency of magnetization transfer by the NOE depends on the molecular rotational correlation time, whose value depends on solution viscosity. The magnitude of the NOE between 1H nuclei varies from +50% when molecular tumbling is fast to -100% when it is slow, the latter case corresponding to the spin diffusion limit. In an intermediate tumbling regime, the NOE may be vanishingly small. Increasing the viscosity of the solution increases the motional correlation time, and as a result, otherwise unobservable NOEs may be revealed and brought close to the spin diffusion limit. The goal of this review is to report the resolution of structural problems that benefited from the manipulation of the negative NOE by means of viscous solvents, including examples of molecular structure determination, conformation elucidation and mixture analysis (the ViscY method).
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
14
|
Köhn B, Kovermann M. All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy. Nat Commun 2020; 11:5760. [PMID: 33188202 PMCID: PMC7666220 DOI: 10.1038/s41467-020-19616-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/23/2020] [Indexed: 01/16/2023] Open
Abstract
The high density of macromolecules affecting proteins due to volume exclusion has been discussed in theory but numerous in vivo experiments cannot be sufficiently understood taking only pure entropic stabilization into account. Here, we show that the thermodynamic stability of a beta barrel protein increases equally at all atomic levels comparing crowded environments with dilute conditions by applying multidimensional high-resolution NMR spectroscopy in a systematic manner. Different crowding agents evoke a pure stabilization cooperatively and do not disturb the surface or integrity of the protein fold. The here developed methodology provides a solid base that can be easily expanded to incorporate e.g. binding partners to recognize functional consequences of crowded conditions. Our results are relevant to research projects targeting soluble proteins in vivo as it can be anticipated that their thermodynamic stability increase comparably and has consequently to be taken into account to coherently understand intracellular processes.
Collapse
Affiliation(s)
- Birgit Köhn
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
| |
Collapse
|
15
|
Insight into the Folding and Dimerization Mechanisms of the N-Terminal Domain from Human TDP-43. Int J Mol Sci 2020; 21:ijms21176259. [PMID: 32872449 PMCID: PMC7504384 DOI: 10.3390/ijms21176259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.
Collapse
|
16
|
Puglisi R, Brylski O, Alfano C, Martin SR, Pastore A, Temussi PA. Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy. Commun Chem 2020; 3:100. [PMID: 33718626 PMCID: PMC7116895 DOI: 10.1038/s42004-020-00358-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
A topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of the residues used for the calculation is made. We propose a new parameter, named RAD, which reflects the level of protection of a specific amide proton in the protein core and can guide through the selection of the resonances. We also suggest a way to calibrate the volumes to become independent of technical limitations. The methodology we propose leads to stability curves comparable to that calculated from CD data and provides a new tool for thermodynamic measurements in complex environments.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Oliver Brylski
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | - Annalisa Pastore
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
| | - Piero A. Temussi
- UK-DRI at the Wohl Institute of King’s College London, 5 Cutcombe Road, SE59RT London, UK
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Napoli, Italy
| |
Collapse
|
17
|
Welte H, Zhou T, Mihajlenko X, Mayans O, Kovermann M. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Sci Rep 2020; 10:2640. [PMID: 32060391 PMCID: PMC7021800 DOI: 10.1038/s41598-020-59446-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorine labelling represents one promising approach to study proteins in their native environment due to efficient suppressing of background signals. Here, we systematically probe inherent thermodynamic and structural characteristics of the Cold shock protein B from Bacillus subtilis (BsCspB) upon fluorine labelling. A sophisticated combination of fluorescence and NMR experiments has been applied to elucidate potential perturbations due to insertion of fluorine into the protein. We show that single fluorine labelling of phenylalanine or tryptophan residues has neither significant impact on thermodynamic stability nor on folding kinetics compared to wild type BsCspB. Structure determination of fluorinated phenylalanine and tryptophan labelled BsCspB using X-ray crystallography reveals no displacements even for the orientation of fluorinated aromatic side chains in comparison to wild type BsCspB. Hence we propose that single fluorinated phenylalanine and tryptophan residues used for protein labelling may serve as ideal probes to reliably characterize inherent features of proteins that are present in a highly biological context like the cell.
Collapse
Affiliation(s)
- Hannah Welte
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Tiankun Zhou
- Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Xenia Mihajlenko
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Olga Mayans
- Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Zukunftskolleg, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.
| |
Collapse
|
18
|
Welte H, Kovermann M. Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy. Protein Expr Purif 2019; 157:86-91. [DOI: 10.1016/j.pep.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
|
19
|
Taricska N, Bokor M, Menyhárd DK, Tompa K, Perczel A. Hydration shell differentiates folded and disordered states of a Trp-cage miniprotein, allowing characterization of structural heterogeneity by wide-line NMR measurements. Sci Rep 2019; 9:2947. [PMID: 30814556 PMCID: PMC6393587 DOI: 10.1038/s41598-019-39121-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hydration properties of folded and unfolded/disordered miniproteins were monitored in frozen solutions by wide-line 1H-NMR. The amount of mobile water as function of T (-80 °C < T < 0 °C) was found characteristically different for folded (TC5b), semi-folded (pH < 3, TCb5(H+)) and disordered (TC5b_N1R) variants. Comparing results of wide-line 1H-NMR and molecular dynamics simulations we found that both the amount of mobile water surrounding proteins in ice, as well as their thaw profiles differs significantly as function of the compactness and conformational heterogeneity of their structure. We found that (i) at around -50 °C ~50 H2Os/protein melt (ii) if the protein is well-folded then this amount of mobile water remains quasi-constant up to -20 °C, (iii) if disordered then the quantity of the lubricating mobile water increases with T in a constant manner up to ~200 H2Os/protein by reaching -20 °C. Especially in the -55 °C ↔ -15 °C temperature range, wide-line 1H-NMR detects the heterogeneity of protein fold, providing the size of the hydration shell surrounding the accessible conformers at a given temperature. Results indicate that freezing of protein solutions proceeds by the gradual selection of the enthalpically most favored states that also minimize the number of bridging waters.
Collapse
Affiliation(s)
- Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Mónika Bokor
- Institute for Solid State Physics and Optics, Wigner RCP of the HAS, 1121, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, Pázmány Péter st. 1A, 1117, Budapest, Hungary
| | - Kálmán Tompa
- Institute for Solid State Physics and Optics, Wigner RCP of the HAS, 1121, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, 1117, Hungary.
- MTA-ELTE Protein Modelling Research Group, Pázmány Péter st. 1A, 1117, Budapest, Hungary.
| |
Collapse
|
20
|
MacMillan HA. Dissecting cause from consequence: a systematic approach to thermal limits. J Exp Biol 2019; 222:222/4/jeb191593. [DOI: 10.1242/jeb.191593] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT
Thermal limits mark the boundaries of ectotherm performance, and are increasingly appreciated as strong correlates and possible determinants of animal distribution patterns. The mechanisms setting the thermal limits of ectothermic animals are under active study and rigorous debate as we try to reconcile new observations in the lab and field with the knowledge gained from a long history of research on thermal adaptation. Here, I provide a perspective on our divided understanding of the mechanisms setting thermal limits of ectothermic animals. I focus primarily on the fundamental differences between high and low temperatures, and how animal form and environment can place different constraints on different taxa. Together, complexity and variation in animal form drive complexity in the interactions within and among levels of biological organization, creating a formidable barrier to determining mechanistic cause and effect at thermal limits. Progress in our understanding of thermal limits will require extensive collaboration and systematic approaches that embrace this complexity and allow us to separate the causes of failure from the physiological consequences that can quickly follow. I argue that by building integrative models that explain causal links among multiple organ systems, we can more quickly arrive at a holistic understanding of the varied challenges facing animals at extreme temperatures.
Collapse
|
21
|
Klamt A, Nagarathinam K, Tanabe M, Kumar A, Balbach J. Hyperbolic Pressure-Temperature Phase Diagram of the Zinc-Finger Protein apoKti11 Detected by NMR Spectroscopy. J Phys Chem B 2019; 123:792-801. [PMID: 30608169 DOI: 10.1021/acs.jpcb.8b11019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For a comprehensive understanding of the thermodynamic state functions describing the stability of a protein, the influence of the intensive properties of temperature and pressure has to be known. With the zinc-finger-containing Kti11, we found a suitable protein for this purpose because folding and unfolding transitions occur at an experimentally accessible temperature (280-330 °K) and pressure (0.1-240 MPa) range. We solved the crystal structure of the apo form of Kti11 to reveal two disulfide bonds at the metal-binding site, which seals off a cavity in the β-barrel part of the protein. From a generally applicable proton NMR approach, we could determine the populations of folded and unfolded chains under all conditions, leading to a hyperbolic pressure-temperature phase diagram rarely observed for proteins. A global fit of a two-state model to all derived populations disclosed reliable values for the change in Gibbs free energy, volume, entropy, heat capacity, compressibility, and thermal expansion upon unfolding. The unfolded state of apoKti11 has a lower compressibility compared to the native state and a smaller volume at ambient pressure. Therefore, a pressure increase up to 200 MPa reduces the population of the native state, and above this value, the native population increases again. Pressure-induced chemical-shift changes in two-dimensional 1H-15N NMR spectra could be employed for a molecular interpretation of the thermodynamic properties of apoKti11.
Collapse
Affiliation(s)
- Andi Klamt
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany
| | - Kumar Nagarathinam
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Institute of Virology , Hannover Medical School , Carl-Neuberg-Straße 1 , D-30625 Hannover , Germany
| | - Mikio Tanabe
- HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany.,Structural Biology Research Center, Institute of Materials Structure Science , KEK/High Energy Accelerator Research Organization , 1-1 Oho , Tsukuba , Ibaraki , 305-0801 , Japan
| | - Amit Kumar
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,Department of Diabetes, Faculty of Lifesciences and Medicine , King's College London , Great Maze Pond , London SE1 1UL , U.K
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther University Halle-Wittenberg , Betty-Heimann Street 7 , 06120 Halle , Germany.,HALOmem, Membrane Protein Biochemistry , Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Street 3 , 06120 Halle (Saale) , Germany
| |
Collapse
|
22
|
Pastore A, Martin SR, Temussi PA. Generalized View of Protein Folding: In Medio Stat Virtus. J Am Chem Soc 2019; 141:2194-2200. [PMID: 30566837 DOI: 10.1021/jacs.8b10779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteins are often described in textbooks as being only "marginally stable" but many proteins, specifically those with a high free energy of unfolding are, in fact, so stable that they exist only in the fully folded state except under harsh denaturing conditions. Proteins that are truly only marginally stable, those with a low free energy of unfolding, exist as an equilibrium mixture of folded and unfolded forms under "normal" conditions. To some extent such proteins have some features in common with "intrinsically disordered" proteins. We analyzed the relationship between these marginally stable proteins and intrinsically disordered proteins in order to fully understand the twilight zone that distinguishes the two ensembles in the hope of clarifying the fuzzy borders of the current classification that divides the protein world into folded and intrinsically disordered ones. Our analysis suggests that the division may be too drastic and misleading, because it puts within the same category proteins with very different behaviors. We propose a restricted, albeit operational, definition of "marginally stable proteins", referring by this term only to proteins whose free energy difference between the folded and unfolded states falls in the interval 0-3 kcal/mol. These proteins have special features because they normally exist as equilibrium mixtures of folded and unfolded species or as molten globule states. This coexistence makes marginally stable proteins ideal tools to study even small environmental changes to which they may behave as natural sensors.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Department of Molecular Medicine , University of Pavia , Pavia 27100 , Italy
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute , 1 Midland Road , London NW1 1AT , United Kingdom
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Dipartimento di Scienze Chimiche , Universita' di Napoli Federico II , Napoli 80126 , Italy
| |
Collapse
|
23
|
|
24
|
Abstract
Proteins undergo both cold and heat denaturation, but often cold denaturation cannot be detected because it occurs at temperatures below water freezing. Proteins undergoing detectable cold as well as heat denaturation yield a reliable curve of protein stability. Here we use bacterial IscU, an essential and ancient protein involved in iron cluster biogenesis, to show an important example of unbiased cold denaturation, based on electrostatic frustration caused by a dualism between iron–sulfur cluster binding and the presence of a functionally essential electrostatic gate. We explore the structural determinants and the universals that determine cold denaturation with the aid of a coarse grain model. Our results set a firm point in our understanding of cold denaturation and give us general rules to induce and predict protein cold denaturation. The conflict between ligand binding and stability hints at the importance of the structure–function dualism in protein evolution.
Collapse
|
25
|
Geitner AJ, Weininger U, Paulsen H, Balbach J, Kovermann M. Structure-Based Insights into the Dynamics and Function of Two-Domain SlpA from Escherichia coli. Biochemistry 2017; 56:6533-6543. [PMID: 29155566 DOI: 10.1021/acs.biochem.7b00786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SlpA (SlyD-like protein A) comprises two domains, a FK506 binding domain (FKBP fold) of moderate prolyl cis/trans-isomerase activity and an inserted in flap (IF) domain that hosts its chaperone activity. Here we present the nuclear magnetic resonance (NMR) solution structure of apo Escherichia coli SlpA determined by NMR that mirrors the structural properties seen for various SlyD homologues. Crucial structural differences in side-chain orientation arise for F37, which points directly into the hydrophobic core of the active site. It forms a prominent aromatic stacking with F15, one of the key residues for PPIase activity, thus giving a possible explanation for the inherently low PPIase activity of SlpA. The IF domain reveals the highest stability within the FKBP-IF protein family, most likely arising from an aromatic cluster formed by four phenylalanine residues. Both the thermodynamic stability and the PPIase and chaperone activity let us speculate that SlpA is a backup system for homologous bacterial systems under unfavorable conditions.
Collapse
Affiliation(s)
| | - Ulrich Weininger
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Hauke Paulsen
- Institut für Physik, Universität Lübeck , Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Universität Konstanz , Fachbereich Chemie, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
26
|
Alfano C, Sanfelice D, Martin SR, Pastore A, Temussi PA. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nat Commun 2017; 8:15428. [PMID: 28516908 PMCID: PMC5454340 DOI: 10.1038/ncomms15428] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Domenico Sanfelice
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Stephen R. Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Annalisa Pastore
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Piero Andrea Temussi
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Napoli 80126, Italy
| |
Collapse
|
27
|
Rosa M, Roberts CJ, Rodrigues MA. Connecting high-temperature and low-temperature protein stability and aggregation. PLoS One 2017; 12:e0176748. [PMID: 28472066 PMCID: PMC5417562 DOI: 10.1371/journal.pone.0176748] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Protein aggregation is a long-standing problem for preservation of proteins in both laboratory settings and for commercial biotechnology products. It is well established that heating (cooling) can accelerate (slow) aggregation by populating (depopulating) unfolded or partially unfolded monomer states that are key intermediates in aggregation processes. However, there is a long-standing question of whether the same mechanism(s) that lead to aggregation under high-temperature stress are relevant for low-temperature stress such as in refrigerated or supercooled liquids. This report shows the first direct comparison of “hot” and “cold” aggregation kinetics and folding/unfolding thermodynamics, using bovine hemoglobin as a model system. The results suggest that the same mechanism for non-native aggregation holds from “hot” to “cold” temperatures, with an aggregation temperature-of-maximum-stability slightly below 0°C. This highlights that sub-zero temperatures can induce cold-mediated aggregation, even in the absence of freezing stresses. From a practical perspective, the results suggests the possibility that cold-stress may be a useful alternative to heat-stress for extrapolating predictions of protein shelf life at refrigerated conditions, as well as providing a foundation for more mechanistic studies of cold-stress conditions in future work. A comparison between isochoric and isobaric methods is also briefly discussed.
Collapse
Affiliation(s)
- Mónica Rosa
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Christopher J. Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Miguel A. Rodrigues
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
28
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 599] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
29
|
van Dijk E, Varilly P, Knowles TPJ, Frenkel D, Abeln S. Consistent Treatment of Hydrophobicity in Protein Lattice Models Accounts for Cold Denaturation. PHYSICAL REVIEW LETTERS 2016; 116:078101. [PMID: 26943560 DOI: 10.1103/physrevlett.116.078101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 05/04/2023]
Abstract
The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavorable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here, we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.
Collapse
Affiliation(s)
- Erik van Dijk
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands
| | - Patrick Varilly
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sanne Abeln
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
30
|
Sanfelice D, Temussi PA. Cold denaturation as a tool to measure protein stability. Biophys Chem 2016; 208:4-8. [PMID: 26026885 PMCID: PMC4671483 DOI: 10.1016/j.bpc.2015.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves.
Collapse
Affiliation(s)
| | - Piero Andrea Temussi
- MRC National Institute for Medical Research, The Ridgeway, London, UK; Dipartimento di Chimica, Universita' di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
31
|
Fizil Á, Gáspári Z, Barna T, Marx F, Batta G. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations. Chemistry 2015; 21:5136-44. [PMID: 25676351 PMCID: PMC4464532 DOI: 10.1002/chem.201404879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction.
Collapse
Affiliation(s)
- Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen (Hungary)
| | | | | | | | | |
Collapse
|
32
|
Sanfelice D, Politou A, Martin SR, De Los Rios P, Temussi P, Pastore A. The effect of crowding and confinement: a comparison of Yfh1 stability in different environments. Phys Biol 2013; 10:045002. [PMID: 23912905 DOI: 10.1088/1478-3975/10/4/045002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Crowding and confinement can affect protein stability, favouring the more compact species amongst the folded and unfolded conformations. An unbiased assessment of the relative efficacy of crowded and confined environments has been hampered so far by the paucity of homogeneous comparisons on the same protein. This paper reports spectroscopic studies on yeast frataxin (Yfh1), a protein which provides an excellent model system for stability studies since it undergoes both cold and heat denaturation at measurable temperatures. The stability of Yfh1 was evaluated in the presence of Ficoll 70 and inside the cavities of polyacrylamide gels as means of mimicking crowding and confinement. We find that both effects influence the thermal stability of Yfh1 to a comparable extent thus providing the first direct comparison of crowding and confinement on the same protein. Thanks to the measurement of the full stability curve we also present the first thermodynamic characterization of the stability of a protein in crowding conditions.
Collapse
Affiliation(s)
- Domenico Sanfelice
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
33
|
High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci U S A 2013; 110:E368-76. [PMID: 23284170 DOI: 10.1073/pnas.1212222110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.
Collapse
|
34
|
Buchner GS, Shih N, Reece AE, Niebling S, Kubelka J. Unusual Cold Denaturation of a Small Protein Domain. Biochemistry 2012; 51:6496-8. [DOI: 10.1021/bi300916v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ginka S. Buchner
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie,
Wyoming 82071, United States
| | - Natalie Shih
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie,
Wyoming 82071, United States
| | - Amy E. Reece
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie,
Wyoming 82071, United States
| | - Stephan Niebling
- Department of Physics, University of Osnabrück, D-49076 Osnabrück,
Germany
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie,
Wyoming 82071, United States
| |
Collapse
|
35
|
NMR-based structural biology of proteins in supercooled water. ACTA ACUST UNITED AC 2011; 12:1-7. [DOI: 10.1007/s10969-011-9111-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
36
|
Shan B, McClendon S, Rospigliosi C, Eliezer D, Raleigh DP. The cold denatured state of the C-terminal domain of protein L9 is compact and contains both native and non-native structure. J Am Chem Soc 2010; 132:4669-77. [PMID: 20225821 PMCID: PMC3319020 DOI: 10.1021/ja908104s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cold denaturation is a general property of globular proteins, and the process provides insight into the origins of the cooperativity of protein folding and the nature of partially folded states. Unfortunately, studies of protein cold denaturation have been hindered by the fact that the cold denatured state is normally difficult to access experimentally. Special conditions such as addition of high concentrations of denaturant, encapsulation into reverse micelles, the formation of emulsified solutions, high pressure, or extremes of pH have been applied, but these can perturb the unfolded state of proteins. The cold denatured state of the C-terminal domain of the ribosomal protein L9 can be populated under native-like conditions by taking advantage of a destabilizing point mutation which leads to cold denaturation at temperatures above 0 degrees C. This state is in slow exchange with the native state on the NMR time scale. Virtually complete backbone (15)N, (13)C, and (1)H as well as side-chain (13)C(beta) and (1)H(beta) chemical shift assignments were obtained for the cold denatured state at pH 5.7, 12 degrees C. Chemical shift analysis, backbone N-H residual dipolar couplings, amide proton NOEs, and R(2) relaxation rates all indicate that the cold denatured state of CTL9 (the C-terminal domain of the ribosomal protein L9) not only contains significant native-like secondary structure but also non-native structure. The regions corresponding to the two native alpha-helices show a strong tendency to populate helical Phi and Psi angles. The segment which connects alpha-helix 2 and beta-strand 2 (residues 107-124) in the native state exhibits a significant preference to form non-native helical structure in the cold denatured state. The structure observed in the cold denatured state of the I98A mutant is similar to that observed in the pH 3.8 unfolded state of wild type CTL9 at 25 degrees C, suggesting that it is a robust feature of the denatured state ensemble of this protein. The implications for protein folding and for studies of cold denatured states are discussed.
Collapse
Affiliation(s)
- Bing Shan
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400
| | - Sebastian McClendon
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY, 10065
| | - Carla Rospigliosi
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY, 10065
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY, 10065
| | - Daniel P Raleigh
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400
- Graduate Program in Biochemistry and Structural Biology, and Graduate Program in Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
37
|
Sanfelice D, Tancredi T, Politou A, Pastore A, Temussi PA. Cold denaturation and aggregation: a comparative NMR study of titin I28 in bulk and in a confined environment. J Am Chem Soc 2009; 131:11662-3. [PMID: 19653628 DOI: 10.1021/ja904462n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An NMR study of the thermal stability of titin I28 in the temperature range from -16 to 65 degrees C showed that this protein can undergo cold denaturation at physiological conditions. This is the second case of a protein undergoing unbiased cold denaturation. Comparison of the stability curves in buffer and in crowded conditions shows that it is possible to measure thermodynamics parameters for unfolding even when proteins aggregate at high temperature. The use of confinement in polyacrylamide gels, with the addition of polyethylene glycol, allows easy access to subzero temperatures that might enable studies of cold denaturation of many proteins.
Collapse
Affiliation(s)
- Domenico Sanfelice
- Department of Chemistry, Università di Napoli Federico II, via Cinthia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
38
|
Davidovic M, Mattea C, Qvist J, Halle B. Protein Cold Denaturation as Seen From the Solvent. J Am Chem Soc 2008; 131:1025-36. [DOI: 10.1021/ja8056419] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monika Davidovic
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Carlos Mattea
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Johan Qvist
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| | - Bertil Halle
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
39
|
Martin SR, Esposito V, De Los Rios P, Pastore A, Temussi PA. Cold denaturation of yeast frataxin offers the clue to understand the effect of alcohols on protein stability. J Am Chem Soc 2008; 130:9963-70. [PMID: 18593164 DOI: 10.1021/ja803280e] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although alcohols are well-known to be protein denaturants when present at high concentrations, their effect on proteins at low concentrations is much less well characterized. In this paper, we present a study of the effects of alcohols on protein stability using Yfh1, the yeast ortholog of the human protein frataxin. Exploiting the unusual property of this protein of undergoing cold denaturation around 0 degrees C without any ad hoc destabilization, we determined the stability curve on the basis of both high and low temperature unfolding in the presence of three commonly used alcohols: trifluoroethanol, ethanol, and methanol. In all cases, we observed an extended temperature range of protein stability as determined by a modest increase of the high temperature of unfolding but an appreciable decrease in the low temperature of unfolding. On the basis of simple thermodynamic considerations, we are able to interpret the literature on the effects of alcohols on proteins and to generalize our findings. We suggest that alcohols, at low concentration and physiological pH, stabilize proteins by greatly widening the range of temperatures over which the protein is stable. Our results also clarify the molecular mechanism of the interaction and validate the current theoretical interpretation of the mechanism of cold denaturation.
Collapse
Affiliation(s)
- Stephen R Martin
- National Institute for Medical Research, The Ridgeway, London NW7 1AA U.K
| | | | | | | | | |
Collapse
|
40
|
Shen Y, Szyperski T. Structure of the protein BPTI derived with NOESY in supercooled water: validation and refinement of solution structures. Angew Chem Int Ed Engl 2008; 47:324-6. [PMID: 17994654 DOI: 10.1002/anie.200702842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
41
|
Shen Y, Szyperski T. Structure of the Protein BPTI Derived with NOESY in Supercooled Water: Validation and Refinement of Solution Structures. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200702842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Pastore A, Martin SR, Politou A, Kondapalli KC, Stemmler T, Temussi PA. Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions. J Am Chem Soc 2007; 129:5374-5. [PMID: 17411056 PMCID: PMC2664662 DOI: 10.1021/ja0714538] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|