1
|
Miranda A, Seyer D, Palomino-Durand C, Morakchi-Goudjil H, Massonie M, Agniel R, Rammal H, Pauthe E, Gand A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front Bioeng Biotechnol 2022; 9:807697. [PMID: 35111738 PMCID: PMC8801876 DOI: 10.3389/fbioe.2021.807697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.
Collapse
Affiliation(s)
- Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Carla Palomino-Durand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Houda Morakchi-Goudjil
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Mathilde Massonie
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Hassan Rammal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- EFOR Healthcare Paris, Biocompatibility Platform, Levallois-Perret, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| |
Collapse
|
2
|
Cantini M, Gomide K, Moulisova V, González‐García C, Salmerón‐Sánchez M. Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks. ADVANCED BIOSYSTEMS 2017; 1:1700047. [PMID: 29497701 PMCID: PMC5822048 DOI: 10.1002/adbi.201700047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/05/2017] [Indexed: 01/09/2023]
Abstract
Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.
Collapse
Affiliation(s)
- Marco Cantini
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Karina Gomide
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Vladimira Moulisova
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Cristina González‐García
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| | - Manuel Salmerón‐Sánchez
- Division of Biomedical EngineeringSchool of EngineeringUniversity of GlasgowOakfield AvenueG128LTGlasgowUK
| |
Collapse
|
3
|
Herklotz M, Prewitz MC, Bidan CM, Dunlop JW, Fratzl P, Werner C. Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 2015; 60:121-9. [DOI: 10.1016/j.biomaterials.2015.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
|
4
|
Kasputis T, Pieper A, Rodenhausen KB, Schmidt D, Sekora D, Rice C, Schubert E, Schubert M, Pannier AK. Use of precisely sculptured thin film (STF) substrates with generalized ellipsometry to determine spatial distribution of adsorbed fibronectin to nanostructured columnar topographies and effect on cell adhesion. Acta Biomater 2015; 18:88-99. [PMID: 25712389 DOI: 10.1016/j.actbio.2015.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 01/12/2023]
Abstract
Sculptured thin film (STF) substrates consist of nanocolumns with precise orientation, intercolumnar spacing, and optical anisotropy, which can be used as model biomaterial substrates to study the effect of homogenous nanotopogrophies on the three-dimensional distribution of adsorbed proteins. Generalized ellipsometry was used to discriminate between the distributions of adsorbed FN either on top of or within the intercolumnar void spaces of STFs, afforded by the optical properties of these precisely crafted substrates. Generalized ellipsometry indicated that STFs with vertical nanocolumns enhanced total FN adsorption two-fold relative to flat control substrates and the FN adsorption studies demonstrate different STF characteristics influence the degree of FN immobilization both on top and within intercolumnar spaces, with increasing spacing and surface area enhancing total protein adsorption. Mouse fibroblasts or mouse mesenchymal stem cells were subsequently cultured on STFs, to investigate the effect of highly ordered and defined nanotopographies on cell adhesion, spreading, and proliferation. All STF nanotopographies investigated in the absence of adsorbed FN were found to significantly enhance cell adhesion relative to flat substrates; and the addition of FN to STFs was found to have cell-dependent effects on enhancing cell-material interactions. Furthermore, the amount of FN adsorbed to the STFs did not correlate with comparative enhancements of cell-material interactions, suggesting that nanotopography predominantly contributes to the biocompatibility of homogenous nanocolumnar surfaces. This is the first study to correlate precisely defined nanostructured features with protein distribution and cell-nanomaterial interactions. STFs demonstrate immense potential as biomaterial surfaces for applications in tissue engineering, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Tadas Kasputis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Alex Pieper
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Keith Brian Rodenhausen
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel Schmidt
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Singapore Synchotron Light Source, National University of Singapore, 119077, Singapore; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Derek Sekora
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Charles Rice
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eva Schubert
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mathias Schubert
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Martin S, Wang H, Hartmann L, Pompe T, Schmidt S. Quantification of protein–materials interaction by soft colloidal probe spectroscopy. Phys Chem Chem Phys 2015; 17:3014-8. [DOI: 10.1039/c4cp05484a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interactions between protein layers and material surfaces with varying hydrophobicity are detected by a novel technique based on soft, mechanically deformable hydrogel particles.
Collapse
Affiliation(s)
- Steve Martin
- Institute of Biochemistry
- Leipzig University
- 04103 Leipzig
- Germany
| | - Hanqing Wang
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- Düsseldorf
- Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- Düsseldorf
- Germany
| | - Tilo Pompe
- Institute of Biochemistry
- Leipzig University
- 04103 Leipzig
- Germany
| | - Stephan Schmidt
- Institute of Biochemistry
- Leipzig University
- 04103 Leipzig
- Germany
| |
Collapse
|
6
|
Müller A, Meyer J, Paumer T, Pompe T. Cytoskeletal transition in patterned cells correlates with interfacial energy model. SOFT MATTER 2014; 10:2444-2452. [PMID: 24623115 DOI: 10.1039/c3sm52424h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A cell's morphology is intricately regulated by microenvironmental cues and intracellular feedback signals. Besides biochemical factors, cell fate can be influenced by the mechanics and geometry of the surrounding matrix. The latter point was addressed herein, by studying cell adhesion on two-dimensional micropatterns. Endothelial cells were grown on maleic acid copolymer surfaces structured with stripes of fibronectin by microcontact printing. Experiments showed a biphasic behaviour of actin stress fibre spacing in dependence on the stripe width with a critical size of approx. 15 μm. In a concurrent modelling effort, cells on stripes were simulated as droplet-like structures, including variations of interfacial energy, total volume and dimensions of the nucleus. A biphasic behaviour with regard to cell morphology and area was found, triggered by the minimum of interfacial energy, with the phase transition occurring at a critical stripe width close to the critical stripe width found in the cell experiment. The correlation of experiment and simulation suggests a possible mechanism of the cytoskeletal rearrangements based on interfacial energy arguments.
Collapse
Affiliation(s)
- Andreas Müller
- Institute of Biochemistry, Universität Leipzig, Johannisallee 21/23, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
7
|
Stamov DR, Müller A, Wegrowski Y, Brezillon S, Franz CM. Quantitative analysis of type I collagen fibril regulation by lumican and decorin using AFM. J Struct Biol 2013; 183:394-403. [DOI: 10.1016/j.jsb.2013.05.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
8
|
Nanoscale characterization of cell receptors and binding sites on cell-derived extracellular matrices. Ultramicroscopy 2012; 118:44-52. [DOI: 10.1016/j.ultramic.2012.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/20/2012] [Accepted: 04/20/2012] [Indexed: 01/16/2023]
|
9
|
Pompe T, Kaufmann M, Kasimir M, Johne S, Glorius S, Renner L, Bobeth M, Pompe W, Werner C. Friction-controlled traction force in cell adhesion. Biophys J 2012; 101:1863-70. [PMID: 22004739 DOI: 10.1016/j.bpj.2011.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/29/2023] Open
Abstract
The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo.
Collapse
Affiliation(s)
- Tilo Pompe
- Universität Leipzig, Institute of Biochemistry, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Llopis-Hernández V, Rico P, Ballester-Beltrán J, Moratal D, Salmerón-Sánchez M. Role of surface chemistry in protein remodeling at the cell-material interface. PLoS One 2011; 6:e19610. [PMID: 21573010 PMCID: PMC3090403 DOI: 10.1371/journal.pone.0019610] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/01/2011] [Indexed: 12/26/2022] Open
Abstract
Background The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange adsorbed extracellular matrix (ECM) proteins on the material surface in a fibril-like pattern. Afterwards, the ECM undergoes proteolytic degradation, which is a mechanism for the removal of the excess ECM usually approximated with remodeling. ECM remodeling is a dynamic process that consists of two opposite events: assembly and degradation. Methodology/Principal Findings This work investigates matrix protein dynamics on mixed self-assembled monolayers (SAMs) of –OH and –CH3 terminated alkanethiols. SAMs assembled on gold are highly ordered organic surfaces able to provide different chemical functionalities and well-controlled surface properties. Fibronectin (FN) was adsorbed on the different surfaces and quantified in terms of the adsorbed surface density, distribution and conformation. Initial cell adhesion and signaling on FN-coated SAMs were characterized via the formation of focal adhesions, integrin expression and phosphorylation of FAKs. Afterwards, the reorganization and secretion of FN was assessed. Finally, matrix degradation was followed via the expression of matrix metalloproteinases MMP2 and MMP9 and correlated with Runx2 levels. We show that matrix degradation at the cell material interface depends on surface chemistry in MMP-dependent way. Conclusions/Significance This work provides a broad overview of matrix remodeling at the cell-material interface, establishing correlations between surface chemistry, FN adsorption, cell adhesion and signaling, matrix reorganization and degradation. The reported findings improve our understanding of the role of surface chemistry as a key parameter in the design of new biomaterials. It demonstrates the ability of surface chemistry to direct proteolytic routes at the cell-material interface, which gains a distinct bioengineering interest as a new tool to trigger matrix degradation in different biomedical applications.
Collapse
Affiliation(s)
- Virginia Llopis-Hernández
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain
| | - Patricia Rico
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - José Ballester-Beltrán
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain
| | - Manuel Salmerón-Sánchez
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Regenerative Medicine Unit, Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail:
| |
Collapse
|
11
|
Pompe T, Salchert K, Alberti K, Zandstra P, Werner C. Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protoc 2010; 5:1042-50. [PMID: 20539280 DOI: 10.1038/nprot.2010.70] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surface- and matrix-bound signals modulate stem cell fate in vivo and in vitro. This protocol enables the immobilization of a wide range of biomolecules that contain primary amino groups to different types of solid carriers, including glass substrates and standard polystyrene well plates. We describe how thin polymer coatings of poly(octadecene-alt-maleic anhydride) can be used to covalently attach growth factors directly, or through poly(ethylene glycol) spacers, to solid supports at defined concentrations. Surface-immobilized growth factors can be presented over a wide range of concentrations (5-150 ng cm(-2)), as we have previously shown for leukemia inhibitory factor and stem cell factor. Cell activation can be achieved in the presence of adhesion-promoting extracellular matrix proteins. Depending on the methods used, the overall procedure takes 1.5-3 d. In general, the approach can be used to investigate the effect of defined amounts of immobilized growth factors on stem cells and on the maintenance, growth and differentiation of other cell types.
Collapse
Affiliation(s)
- Tilo Pompe
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
| | | | | | | | | |
Collapse
|
12
|
Pompe T, Glorius S, Bischoff T, Uhlmann I, Kaufmann M, Brenner S, Werner C. Dissecting the impact of matrix anchorage and elasticity in cell adhesion. Biophys J 2010; 97:2154-63. [PMID: 19843448 DOI: 10.1016/j.bpj.2009.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 07/01/2009] [Accepted: 07/29/2009] [Indexed: 01/09/2023] Open
Abstract
Extracellular matrices determine cellular fate decisions through the regulation of intracellular force and stress. Previous studies suggest that matrix stiffness and ligand anchorage cause distinct signaling effects. We show herein how defined noncovalent anchorage of adhesion ligands to elastic substrates allows for dissection of intracellular adhesion signaling pathways related to matrix stiffness and receptor forces. Quantitative analysis of the mechanical balance in cell adhesion using traction force microscopy revealed distinct scalings of the strain energy imparted by the cells on the substrates dependent either on matrix stiffness or on receptor force. Those scalings suggested the applicability of a linear elastic theoretical framework for the description of cell adhesion in a certain parameter range, which is cell-type-dependent. Besides the deconvolution of biophysical adhesion signaling, site-specific phosphorylation of focal adhesion kinase, dependent either on matrix stiffness or on receptor force, also demonstrated the dissection of biochemical signaling events in our approach. Moreover, the net contractile moment of the adherent cells and their strain energy exerted on the elastic substrate was found to be a robust measure of cell adhesion with a unifying power-law scaling exponent of 1.5 independent of matrix stiffness.
Collapse
Affiliation(s)
- Tilo Pompe
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Maitz MF, Teichmann J, Sperling C, Werner C. Surface endotoxin contamination and hemocompatibility evaluation of materials. J Biomed Mater Res B Appl Biomater 2009; 90:18-25. [PMID: 18973273 DOI: 10.1002/jbm.b.31247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate the blood compatibility of new materials, a clear distinction between properties of the materials and effects due to surface contamination by adsorbed endotoxins is essential. This study compares direct contact approaches and elution methods with water, organic solvents, nonionic, and zwitterionic detergents for determination of surface-adsorbed endotoxin by the limulus amoebocyte lysate (LAL) test and determines the blood compatibility of various surfaces with controlled endotoxin contamination in vitro. The LAL test in direct contact with an endotoxin-contaminated surface was concluded to be not practicable for most devices and its sensitivity showed a high dependence on surface characteristics. Among the elution methods, 0.2% Tween-20 showed most stable elution characteristics and appears therefore preferable. Biological reactions at in vitro blood exposure were found to be only minimally influenced by adsorbed endotoxin during the time window of 2 h, allowing for a straightforward discrimination between materials and endotoxin-dependent reactions.
Collapse
Affiliation(s)
- Manfred F Maitz
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
14
|
Gugutkov D, González-García C, Rodríguez Hernández JC, Altankov G, Salmerón-Sánchez M. Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10893-10900. [PMID: 19735141 DOI: 10.1021/la9012203] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.
Collapse
Affiliation(s)
- Dencho Gugutkov
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
Herklotz M, Werner C, Pompe T. The impact of primary and secondary ligand coupling on extracellular matrix characteristics and formation of endothelial capillaries. Biomaterials 2008; 30:35-44. [PMID: 18838154 DOI: 10.1016/j.biomaterials.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/05/2008] [Indexed: 01/10/2023]
Abstract
The success of tissue engineering strategies using artificial scaffolds crucially depends on a controlled formation of well-developed vascular networks in growing tissues. The presentation of extracellular matrix ligands on scaffolds is often envisioned as an appropriate strategy to support capillary formation. We show that the control of primary coupling mode - covalent versus physisorbed - as well as secondary interactions of cell-secreted extracellular matrix proteins have a strong impact on endothelial cell development. A set of maleic anhydride copolymer thin films was used as planar model substrates. The copolymers exhibit a switchable mode of primary matrix coupling combined with a gradation of secondary matrix-substrate interaction due to a variation of surface hydrophobicity and polarity. We found that the cells adhere in a more native state at a low amount of covalent primary coupled fibronectin ligands in conjunction with weak interactions of secondarily adsorbed adhesion ligands on hydrophilic surfaces. These substrates allow for a formation of capillary-like networks of endothelial cells. High ligand densities and strong secondary hydrophobic interactions inhibit a pronounced capillary formation. Furthermore, the composition and structure of the formed extracellular matrix correlates well with the specific integrin binding pattern. From these results it is concluded that the formation of blood capillaries in artificial scaffolds can be triggered by controlling primary and secondary coupling of cell adhesion ligands to implant materials.
Collapse
Affiliation(s)
- Manuela Herklotz
- Leibniz Institute of Polymer Research Dresden, The Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | | | | |
Collapse
|
16
|
Pompe T, Keller K, Mothes G, Nitschke M, Teese M, Zimmermann R, Werner C. Surface modification of poly(hydroxybutyrate) films to control cell–matrix adhesion. Biomaterials 2007; 28:28-37. [PMID: 16963116 DOI: 10.1016/j.biomaterials.2006.08.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Tailoring surface properties of degradable polymer scaffolds is key to progress in various tissue engineering strategies. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin films were modified by low pressure ammonia plasma, low pressure water vapour plasma, or immersion in a sodium hydroxide solution to elaborate means to control the cell-matrix adhesion of human umbilical cord vein endothelial cells grown on these materials. Fibronectin (FN) heteroexchange and cell adhesion were correlated to the physicochemical characteristics of the modified polymer surfaces which were investigated by X-ray photoelectron spectroscopy (XPS), scanning force microscopy (SFM), electrokinetic measurements, and contact angle measurements. All treatments increased the hydrophilicity of the polymer samples, which could be accounted to newly created amine or carboxyl functionalities for ammonia plasma or water vapour plasma treatments, respectively, and ester hydrolysis for treatments with alkaline aqueous solutions. Main features of cell adhesion and FN reorganisation-evaluated after 1h and after 5 days-could be attributed to the anchorage strength of pre-coated FN layers at the polymer surface, which was, in turn found to be triggered by the type of modification applied. In line with earlier studies referring to different materials cell adhesion and matrix reorganisation were shown to be sensitively controlled through the physicochemical profile of poly(hydroxybutyrate) surfaces.
Collapse
Affiliation(s)
- Tilo Pompe
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Modeling of pattern development during fibronectin nanofibril formation. Biointerphases 2006; 1:93-7. [DOI: 10.1116/1.2345653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Modulating Extracellular Matrix at Interfaces of Polymeric Materials. POLYMERS FOR REGENERATIVE MEDICINE 2006. [DOI: 10.1007/12_089] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|