1
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
2
|
Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. Int J Mol Sci 2021; 22:ijms222111672. [PMID: 34769103 PMCID: PMC8584137 DOI: 10.3390/ijms222111672] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops.
Collapse
|
3
|
Teevan-Hanman C, O’Shea P. Candida albicans exhibit two classes of cell surface binding sites for serum albumin defined by their affinity, abundance and prospective role in interkingdom signalling. PLoS One 2021; 16:e0254593. [PMID: 34280221 PMCID: PMC8289007 DOI: 10.1371/journal.pone.0254593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
Serum albumin binding to the yeast form of Candida albicans is described. Two populations of binding site are identified using two complementary spectroscopic techniques: an extrinsic fluorescent probe, 3-hexa-decanoyl-7-hydrocoumarin ([HEXCO) added to the C. albicans yeast cell surface that records the electrostatic surface potential and so responds to the surface binding of serum albumin and secondly a light scattering technique that reveals how albumin modulates aggregation of the yeast population. The albumin binding sites are found to possess different binding affinities and relative abundance leading to different total binding capacities. These are characterized as a receptor population with high affinity binding (Kd ~ 17 μM) but relatively low abundance and a separate population with high abundance but much lower affinity (Kd ~ 364 μM). The low-affinity binding sites are shown to be associated with the yeast cell aggregation. These values are found be dependent on the C. albicans strain and the nature of the culture media; some examples of these effects are explored. The possible physiological consequences of the presence of these sites are speculated in terms of evading the host's immune response, biofilm formation and possible interkingdom signaling processes.
Collapse
Affiliation(s)
- Claire Teevan-Hanman
- Faculty of Health & Medicine, Lancaster University, Lancaster, England, United Kingdom
| | - Paul O’Shea
- Faculty of Health & Medicine, Lancaster University, Lancaster, England, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:963-978. [PMID: 32901934 PMCID: PMC7821329 DOI: 10.1111/nph.16915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 05/20/2023]
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zhiming Ma
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Deyan Wang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Chenjin Wen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Dingquan Huang
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zichen Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Liang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Ruixi Li
- Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xu Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
5
|
Andrews DL. Effects of Intrinsic Local Fields on Molecular Fluorescence and Energy Transfer: Dipole Mechanisms and Surface Potentials. J Phys Chem B 2019; 123:5015-5023. [PMID: 30908043 DOI: 10.1021/acs.jpcb.9b00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general theory is developed to identify the influence of local dipole fields on fluorescence and intermolecular electronic excitation transfer. The analysis, based on electrodynamical principles, identifies the fundamental quantum mechanisms and delivers full analytical results. The aim is to afford new physical insights, assisting the interpretation of measurements on the specific effects of local molecular dipoles on direct fluorescence and on fluorescence resonance energy transfer. Dipole field effects, which include those originating from intrinsically polar chromophores and surface field gradients, also prove to be manifest in electronic transitions of quadrupole symmetry character. The results have particular significance for fluorescence studies of cell membrane biophysics.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| |
Collapse
|
6
|
|
7
|
Kovács T, Batta G, Zákány F, Szöllősi J, Nagy P. The dipole potential correlates with lipid raft markers in the plasma membrane of living cells. J Lipid Res 2017; 58:1681-1691. [PMID: 28607008 DOI: 10.1194/jlr.m077339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Indexed: 11/20/2022] Open
Abstract
The dipole potential generating an electric field much stronger than any other type of membrane potential influences a wide array of phenomena, ranging from passive permeation to voltage-dependent conformational changes of membrane proteins. It is generated by the ordered orientation of lipid carbonyl and membrane-attached water dipole moments. Theoretical considerations and indirect experimental evidence obtained in model membranes suggest that the dipole potential is larger in liquid-ordered domains believed to correspond to lipid rafts in cell membranes. Using three different dipole potential-sensitive fluorophores and four different labeling approaches of raft and nonraft domains, we showed that the dipole potential is indeed stronger in lipid rafts than in the rest of the membrane. The magnitude of this difference is similar to that observed between the dipole potential in control and sphingolipid-enriched cells characteristic of Gaucher's disease. The results established that the heterogeneity of the dipole potential in living cell membranes is correlated with lipid rafts and imply that alterations in the lipid composition of the cell membrane in human diseases can lead to substantial changes in the dipole potential.
Collapse
Affiliation(s)
- Tamás Kovács
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Faculty of Medicine, and Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florina Zákány
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Iswanto ABB, Kim JY. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis. PLANTS 2017; 6:plants6020015. [PMID: 28368351 PMCID: PMC5489787 DOI: 10.3390/plants6020015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022]
Abstract
Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
9
|
Bokori-Brown M, Petrov PG, Khafaji MA, Mughal MK, Naylor CE, Shore AC, Gooding KM, Casanova F, Mitchell TJ, Titball RW, Winlove CP. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. J Biol Chem 2016; 291:10210-27. [PMID: 26984406 DOI: 10.1074/jbc.m115.691899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Peter G Petrov
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Mawya A Khafaji
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Muhammad K Mughal
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire E Naylor
- the Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Angela C Shore
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Kim M Gooding
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Francesco Casanova
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Tim J Mitchell
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard W Titball
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - C Peter Winlove
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
10
|
Richens JL, Lane JS, Bramble JP, O'Shea P. The electrical interplay between proteins and lipids in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1828-36. [DOI: 10.1016/j.bbamem.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
|
11
|
Richens JL, Lane JS, Mather ML, O'Shea P. The interactions of squalene, alkanes and other mineral oils with model membranes; effects on membrane heterogeneity and function. J Colloid Interface Sci 2015; 457:225-31. [PMID: 26188729 DOI: 10.1016/j.jcis.2015.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Droplet interface bilayers (DIBs) offer many favourable facets as an artificial membrane system but the influence of any residual oil that remains in the bilayer following preparation is ill-defined. In this study the fluorescent membrane probes di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (Di-8-ANEPPS) and Fluoresceinphosphatidylethanolamine (FPE) were used to help understand the nature of the phospholipid-oil interaction and to examine any structural and functional consequences of such interactions on membrane bilayer properties. Concentration-dependent modifications of the membrane dipole potential were found to occur in phospholipid vesicles exposed to a variety of different oils. Incorporation of oil into the lipid bilayer was shown to have no significant effect on the movement of fatty acids across the lipid bilayer. Changes in membrane heterogeneity were, however, demonstrated with increased microdomain formation being visible in the bilayer following exposure to mineral oil, pentadecane and squalene. As it is important that artificial systems provide an accurate representation of the membrane environment, careful consideration should be taken prior to the application of DIBs in studies of membrane structure and organisation.
Collapse
Affiliation(s)
- Joanna L Richens
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Jordan S Lane
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Melissa L Mather
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Paul O'Shea
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| |
Collapse
|
12
|
Davis S, Davis BM, Richens JL, Vere KA, Petrov PG, Winlove CP, O'Shea P. α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein. J Lipid Res 2015; 56:1543-50. [PMID: 26026069 DOI: 10.1194/jlr.m059519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[β[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir's affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers.
Collapse
Affiliation(s)
- Sterenn Davis
- Biomedical Physics Group, School of Physics, University of Exeter, Exeter, United Kingdom
| | - Benjamin M Davis
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joanna L Richens
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kelly-Ann Vere
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Peter G Petrov
- Biomedical Physics Group, School of Physics, University of Exeter, Exeter, United Kingdom
| | - C Peter Winlove
- Biomedical Physics Group, School of Physics, University of Exeter, Exeter, United Kingdom
| | - Paul O'Shea
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Skočaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Maček P, Veranič P, Sepčić K. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS One 2014; 9:e92783. [PMID: 24664106 PMCID: PMC3963934 DOI: 10.1371/journal.pone.0092783] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/25/2014] [Indexed: 01/01/2023] Open
Abstract
Ostreolysin A (OlyA) is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry) labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK) epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA. OlyA-mCherry also stained cholesterol/sphingomyelin domains in the plasma membranes of both fixed and living MDCK cells, and in the living cells, this staining was abolished by pretreatment with either methyl-β-cyclodextrin or sphingomyelinase. Double labelling of MDCK cells with OlyA-mCherry and the sphingomyelin-specific markers equinatoxin II-Alexa488 and GST-lysenin, the cholera toxin B subunit as a probe that binds to the ganglioside GM1, or the cholesterol-specific D4 domain of perfringolysin O fused with EGFP, showed different patterns of binding and distribution of OlyA-mCherry in comparison with these other proteins. Furthermore, we show that OlyA-mCherry is internalised in living MDCK cells, and within 90 min it reaches the juxtanuclear region via caveolin-1-positive structures. No binding to membranes could be seen when OlyA-mCherry was expressed in MDCK cells. Altogether, these data clearly indicate that OlyA-mCherry is a promising tool for labelling a distinct pool of cholesterol/sphingomyelin membrane domains in living and fixed cells, and for following these domains when they are apparently internalised by the cell.
Collapse
Affiliation(s)
- Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Grundner
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ota
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Andrzej Sobota
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Gerbeau-Pissot P, Der C, Thomas D, Anca IA, Grosjean K, Roche Y, Perrier-Cornet JM, Mongrand S, Simon-Plas F. Modification of plasma membrane organization in tobacco cells elicited by cryptogein. PLANT PHYSIOLOGY 2014; 164:273-86. [PMID: 24235133 PMCID: PMC3875808 DOI: 10.1104/pp.113.225755] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.
Collapse
Affiliation(s)
| | - Christophe Der
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Dominique Thomas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Iulia-Andra Anca
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Kevin Grosjean
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Yann Roche
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Jean-Marie Perrier-Cornet
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Sébastien Mongrand
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Françoise Simon-Plas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| |
Collapse
|
15
|
Weightman P. Prospects for the study of biological systems with high power sources of terahertz radiation. Phys Biol 2012; 9:053001. [PMID: 22931749 DOI: 10.1088/1478-3975/9/5/053001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emergence of intense sources of terahertz radiation based on lasers and electron accelerators has considerable potential for research on biological systems. This perspective gives a brief survey of theoretical work and the results of experiments on biological molecules and more complex biological systems. Evidence is accumulating that terahertz radiation influences biological systems and this needs to be clarified in order to establish safe levels of human exposure to this radiation. The use of strong sources of terahertz radiation may contribute to the resolution of controversies over the mechanism of biological organization. However the potential of these sources will only be realized if they are accompanied by the development of sophisticated pump-probe and multidimensional experimental techniques and by the study of biological systems in the controlled environments necessary for their maintenance and viability.
Collapse
Affiliation(s)
- Peter Weightman
- Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE UK.
| |
Collapse
|
16
|
Ciesielski F, Davis B, Rittig M, Bonev BB, O'Shea P. Receptor-independent interaction of bacterial lipopolysaccharide with lipid and lymphocyte membranes; the role of cholesterol. PLoS One 2012; 7:e38677. [PMID: 22685597 PMCID: PMC3369841 DOI: 10.1371/journal.pone.0038677] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/10/2012] [Indexed: 01/18/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion. We use fluorescence spectroscopy to investigate the interactions of membrane-free LPS from intestinal Gram-negative organisms with cholesterol-containing model membranes and with T-lymphocytes. LPS preparations from Klebsiella pneumoniae and Salmonella enterica were found to bind preferentially to mixed lipid membranes by comparison to pure PC bilayers. The same was observed for LPS from the symbiote Escherichia coli but with an order of magnitude higher dissociation constant. Insertion of LPS into model membranes confirmed the preference for sphimgomyelin/cholesterol-containing systems. LPS insertion into Jurkat T-lymphocyte membranes reveals that they have a significantly greater LPS-binding capacity by comparison to methyl-β-cyclodextrin cholesterol-depleted lymphocyte membranes, albeit at slightly lower binding rates.
Collapse
Affiliation(s)
- Filip Ciesielski
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Benjamin Davis
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Michael Rittig
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Boyan B. Bonev
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (BBB); (PS)
| | - Paul O'Shea
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (BBB); (PS)
| |
Collapse
|
17
|
Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M. Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:257-269. [PMID: 22450166 DOI: 10.1016/j.dci.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
The role of lipid rafts in non-mammalian leukocytes has been scarcely investigated. We performed biochemical and functional analysis of lipid rafts in fish leukocytes. Fish Flotillin-1 and a fish GM1-like molecule (fGM1-L) were found in low density detergent-resistant membranes (LD-DRM) in goldfish macrophages and catfish B lymphocytes, similarly to mammals. The presence of flotillin-1 and fGM1-L in LD-DRM was sensitive to increased detergent concentrations, and cholesterol extraction. Confocal microscopy analysis of flotillin-1 and fGM1-L in fish leukocytes showed a distinctive punctuated staining pattern, suggestive of pre-existing rafts. Confocal microscopy analysis of macrophages showed that the membrane of phagosomes containing serum-opsonized zymosan was enriched in fGM1-L, and zymosan phagocytosis was reduced after cholesterol extraction. The presence of flotillin-1 and fGM1-L in LD-DRM, the microscopic evidence of flotillin-1 and fGM1-L on fish macrophages and B-cells, and the sensitivity of phagocytosis to cholesterol extraction, indicate that lipid rafts are biochemically and functionally similar in leukocytes from fish and mammals.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada AB T6G 2E9
| | | | | | | |
Collapse
|
18
|
Sanderson JM. Resolving the kinetics of lipid, protein and peptide diffusion in membranes. Mol Membr Biol 2012; 29:118-43. [DOI: 10.3109/09687688.2012.678018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Haldar S, Kanaparthi RK, Samanta A, Chattopadhyay A. Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential. Biophys J 2012; 102:1561-9. [PMID: 22500756 DOI: 10.1016/j.bpj.2012.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 01/16/2023] Open
Abstract
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, a representative sterol in higher eukaryotic membranes, is known to increase membrane dipole potential. In this work, we explored the effects of immediate (7-DHC and desmosterol) and evolutionary (ergosterol) precursors of cholesterol on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS. Our results show that the effect of these precursors on membrane dipole potential is very different from that observed with cholesterol, although the structural differences among them are subtle. These results assume relevance, since accumulation of cholesterol precursors due to defective cholesterol biosynthesis has been reported to result in several inherited metabolic disorders such as the Smith-Lemli-Opitz syndrome. Interestingly, cholesterol (and its precursors) has a negligible effect on dipole potential in polyunsaturated membranes. We interpret these results in terms of noncanonical orientation of cholesterol in these membranes. Our results constitute the first report on the effect of biosynthetic and evolutionary precursors of cholesterol on dipole potential, and imply that a subtle change in sterol structure can significantly alter the dipolar field at the membrane interface.
Collapse
Affiliation(s)
- Sourav Haldar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | |
Collapse
|
20
|
Powell KJ, Sharma P, Richens JL, Davis BM, Moses JE, O'Shea P. Interactions of marine-derived γ-pyrone natural products with phospholipid membranes. Phys Chem Chem Phys 2012; 14:14489-91. [DOI: 10.1039/c2cp42920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
McPhee HK, Carlisle JL, Beeby A, Money VA, Watson SMD, Yeo RP, Sanderson JM. Influence of lipids on the interfacial disposition of respiratory syncytical virus matrix protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:304-311. [PMID: 21141948 DOI: 10.1021/la104041n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.
Collapse
Affiliation(s)
- Helen K McPhee
- Department of Chemistry and Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Davis BM, Jensen R, Williams P, O'Shea P. The interaction of N-acylhomoserine lactone quorum sensing signaling molecules with biological membranes: implications for inter-kingdom signaling. PLoS One 2010; 5:e13522. [PMID: 20975958 PMCID: PMC2958149 DOI: 10.1371/journal.pone.0013522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 01/28/2023] Open
Abstract
Background The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets. Methodology/Principal Findings The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed. Conclusions/ Significance Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor.
Collapse
Affiliation(s)
- Benjamin Michael Davis
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottingham, United Kingdom
| | - Rasmus Jensen
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul O'Shea
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Botchway SW, Lewis AM, Stubbs CD. Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:131-41. [PMID: 20953783 DOI: 10.1007/s00249-010-0631-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/28/2022]
Abstract
The ability to detect raft structures in membranes continues to present a problem, especially in the membranes of live cells. Rafts, generally considered to be small (< 200 nm) sphingolipid-rich regions, are commonly modelled using lipid vesicle systems where the ability of fluorophore-labelled lipids to preferentially locate into domains (basically large rafts) is investigated. Instead, in this study the motional properties of different fluorophores were determined using two-photon excitation and time-correlated single-photon counting coupled with diffraction-limited imaging with polarizing optics in scanning mode to obtain nanosecond rotational correlation time images. To develop the method, well-characterized domain-containing models consisting of giant unilamellar vesicles comprising mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin and cholesterol were used with the fluorophores diphenylhexatriene, 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl). Accordingly, images of rotational correlation times of the probes revealed domain structures for all three probes consistent with other studies using different approaches. Rotational correlation time images of living cell membranes were also observed. The method has the advantage that not only does it enable domains to be visualised or imaged in a unique manner but that it can also potentially provide useful information on the lipid dynamics within the structures.
Collapse
Affiliation(s)
- Stanley W Botchway
- Lasers for Science, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX110QX, UK
| | | | | |
Collapse
|
24
|
Hořejší V, Otáhal P, Brdička T. LAT - an important raft-associated transmembrane adaptor protein. Delivered on 6 July 2009 at the 34th FEBS Congress in Prague, Czech Republic. FEBS J 2010; 277:4383-97. [DOI: 10.1111/j.1742-4658.2010.07831.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, Yanamala N, Samhan Arias AK, Tungekar MA, Jiang J, Tyurina YY, Ji J, Klein-Seetharaman J, Pitt BR, Shvedova AA, Bayir H. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions. Adv Drug Deliv Rev 2009; 61:1375-1385. [PMID: 19716396 DOI: 10.1016/j.jprot.2010.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 02/12/2010] [Accepted: 06/08/2009] [Indexed: 12/28/2022]
Abstract
Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Myelin, DIGs, and membrane rafts in the central nervous system. Prostaglandins Other Lipid Mediat 2009; 91:118-29. [PMID: 19379822 DOI: 10.1016/j.prostaglandins.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/21/2022]
Abstract
Over the past 40 years our understanding of the organization of cell membranes has changed dramatically. Membranes are no longer viewed as a homogenous sea of phospholipids studded with randomly positioned islands of proteins. Our current view of the membrane involves the formation of small lipid clusters, comprised mainly of cholesterol and sphingolipids, known as membrane rafts. These lipid clusters apparently include and exclude specific proteins leading to the hypothesis that these domains (1) regulate cellular polarity and compartmentalization through trafficking and sorting, (2) provide platforms for cellular signaling and adhesion, and (3) function as cellular gate keepers. Tremendous controversy surrounds the concept of membrane rafts primarily because these small, highly dynamic entities are too small to be observed with traditional microscopic methods and the most utilized approach for raft analysis relies on poorly quantified, inconsistent biochemical extractions. New analytical approaches are being developed and applied to the study of membrane rafts and these techniques provide great promise for furthering our understanding of these enigmatic domains. In this review we will provide a brief summary of the current understanding of membrane rafts, utilizing the CNS myelin literature for illustrative purposes, and present caveats that should be considered when studying these domains.
Collapse
|