1
|
Motsch V, Brameshuber M, Baumgart F, Schütz GJ, Sevcsik E. A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci Rep 2019; 9:3288. [PMID: 30824760 PMCID: PMC6397226 DOI: 10.1038/s41598-019-39865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
A complete understanding of signaling processes at the plasma membrane depends on a quantitative characterization of the interactions of the involved proteins. Fluorescence recovery after photobleaching (FRAP) is a widely used and convenient technique to obtain kinetic parameters on protein interactions in living cells. FRAP experiments to determine unbinding time constants for proteins at the plasma membrane, however, are often hampered by non-specific contributions to the fluorescence recovery signal. On the example of the interaction between the T cell receptor (TCR) and the Syk kinase ZAP70, we present here an approach based on protein micropatterning that allows the elimination of such non-specific contributions and considerably simplifies analysis of FRAP data. Specifically, detection and reference areas are created within single cells, each being either enriched or depleted in TCR, which permits the isolation of ZAP70-TCR binding in a straight-forward manner. We demonstrate the applicability of our method by comparing it to a conventional FRAP approach.
Collapse
Affiliation(s)
- Viktoria Motsch
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Florian Baumgart
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria.
| |
Collapse
|
2
|
Sustr D, Hlaváček A, Duschl C, Volodkin D. Multi-Fractional Analysis of Molecular Diffusion in Polymer Multilayers by FRAP: A New Simulation-Based Approach. J Phys Chem B 2018; 122:1323-1333. [PMID: 29257689 DOI: 10.1021/acs.jpcb.7b11051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis.
Collapse
Affiliation(s)
- David Sustr
- Faculty of Science, University of Potsdam, Institute of Biochemistry and Biology , Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences , v. v. i., Veveří 97, Brno 602 00, Czech Republic
| | - Claus Duschl
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Dmitry Volodkin
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology (Fraunhofer IZI) , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.,School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
3
|
Schuster BS, Allan DB, Kays JC, Hanes J, Leheny RL. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales. J Control Release 2017; 260:124-133. [PMID: 28578189 DOI: 10.1016/j.jconrel.2017.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022]
Abstract
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales - from tens of nanometers to tens of micrometers - using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample using brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. These findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel B Allan
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Joshua C Kays
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Robert L Leheny
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Vartak N, Papke B, Grecco HE, Rossmannek L, Waldmann H, Hedberg C, Bastiaens PIH. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys J 2014; 106:93-105. [PMID: 24411241 DOI: 10.1016/j.bpj.2013.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
The localization and signaling of S-palmitoylated peripheral membrane proteins is sustained by an acylation cycle in which acyl protein thioesterases (APTs) depalmitoylate mislocalized palmitoylated proteins on endomembranes. However, the APTs are themselves reversibly S-palmitoylated, which localizes thioesterase activity to the site of the antagonistc palmitoylation activity on the Golgi. Here, we resolve this conundrum by showing that palmitoylation of APTs is labile due to autodepalmitoylation, creating two interconverting thioesterase pools: palmitoylated APT on the Golgi and depalmitoylated APT in the cytoplasm, with distinct functionality. By imaging APT-substrate catalytic intermediates, we show that it is the depalmitoylated soluble APT pool that depalmitoylates substrates on all membranes in the cell, thereby establishing its function as release factor of mislocalized palmitoylated proteins in the acylation cycle. The autodepalmitoylating activity on the Golgi constitutes a homeostatic regulation mechanism of APT levels at the Golgi that ensures robust partitioning of APT substrates between the plasma membrane and the Golgi.
Collapse
Affiliation(s)
- Nachiket Vartak
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Bjoern Papke
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Hernan E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Lisaweta Rossmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany
| | - Christian Hedberg
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
5
|
FRAP in Pharmaceutical Research: Practical Guidelines and Applications in Drug Delivery. Pharm Res 2013; 31:255-70. [DOI: 10.1007/s11095-013-1146-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
|
6
|
LI-cadherin cis-dimerizes in the plasma membrane Ca(2+) independently and forms highly dynamic trans-contacts. Cell Mol Life Sci 2012; 69:3851-62. [PMID: 22842778 PMCID: PMC3478510 DOI: 10.1007/s00018-012-1053-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 11/25/2022]
Abstract
LI-cadherin belongs to the family of 7D-cadherins that is characterized by a low sequence similarity to classical cadherins, seven extracellular cadherin repeats (ECs), and a short cytoplasmic domain. Nevertheless, LI-cadherins mediates Ca2+-dependent cell–cell adhesion and induces an epitheloid cellular phenotype in non-polarized CHO cells. Whereas several studies suggest that classical cadherins cis-dimerize in a Ca2+-dependent manner and interact in trans by strand-swapping tryptophan 2 of EC1, little is known about the molecular interactions of LI-cadherin, which lacks tryptophan 2. We thus expressed fluorescent LI-cadherin fusion proteins in HEK293 and CHO cells, analyzed their cell–cell adhesive properties and studied their cellular distribution, cis-interaction, and lateral diffusion in the presence and absence of Ca2+. LI-cadherin highly concentrates in cell contact areas but rapidly leaves those sites upon Ca2+ depletion and redistributes evenly on the cell surface, indicating that it is only kept in the contact areas by trans-interactions. Fluorescence resonance energy transfer analysis of LI-cadherin-CFP and -YFP revealed that LI-cadherin forms cis-dimers that resist Ca2+ depletion. As determined by fluorescence redistribution after photobleaching, LI-cadherin freely diffuses in the plasma membrane as a cis-dimer (D = 0.42 ± 0.03 μm2/s). When trapped by trans-binding in cell contact areas, its diffusion coefficient decreases only threefold to D = 0.12 ± 0.01 μm2/s, revealing that, in contrast to classical and desmosomal cadherins, trans-contacts formed by LI-cadherin are highly dynamic.
Collapse
|
7
|
Klein AS, Schaefer M, Korte T, Herrmann A, Tannert A. HaCaT keratinocytes exhibit a cholesterol and plasma membrane viscosity gradient during directed migration. Exp Cell Res 2012; 318:809-18. [PMID: 22366262 DOI: 10.1016/j.yexcr.2012.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022]
Abstract
Keratinocyte migration plays an important role in cutaneous wound healing by supporting the process of reepithelialisation. During directional migration cells develop a polarised shape with an asymmetric distribution of a variety of signalling molecules in their plasma membrane. Here, we investigated front-to-back differences of the physical properties of the plasma membrane of migrating keratinocyte-like HaCaT cells. Using FRAP and fluorescence lifetime analysis, both under TIR illumination, we demonstrate a reduced viscosity of the plasma membrane in the lamellipodia of migrating HaCaT cells compared with the cell rears. This asymmetry is most likely caused by a reduced cholesterol content of the lamellipodia as demonstrated by filipin staining. siRNA-mediated silencing of the cholesterol transporter ABCA1, which is known to redistribute cholesterol from rafts to non-raft regions, as well as pharmacological inhibition of this transporter with glibenclamide, strongly diminished the viscosity gradient of the plasma membrane. In addition, HaCaT cell migration was inhibited by glibenclamide treatment. These data suggest a preferential role of non-raft cholesterol in the establishment of the asymmetric plasma membrane viscosity.
Collapse
Affiliation(s)
- Anke S Klein
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Germany
| | | | | | | | | |
Collapse
|
8
|
Deschout H, Hagman J, Fransson S, Jonasson J, Rudemo M, Lorén N, Braeckmans K. Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. OPTICS EXPRESS 2010; 18:22886-22905. [PMID: 21164628 DOI: 10.1364/oe.18.022886] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Confocal or multi-photon laser scanning microscopes are convenient tools to perform FRAP diffusion measurements. Despite its popularity, accurate FRAP remains often challenging since current methods are either limited to relatively large bleach regions or can be complicated for non-specialists. In order to bring reliable quantitative FRAP measurements to the broad community of laser scanning microscopy users, here we have revised FRAP theory and present a new pixel based FRAP method relying on the photo bleaching of rectangular regions of any size and aspect ratio. The method allows for fast and straightforward quantitative diffusion measurements due to a closed-form expression for the recovery process utilizing all available spatial and temporal data. After a detailed validation, its versatility is demonstrated by diffusion studies in heterogeneous biopolymer mixtures.
Collapse
Affiliation(s)
- Hendrik Deschout
- Biophotonic Imaging Group, Lab General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Heterogeneous diffusion of a membrane-bound pHLIP peptide. Biophys J 2010; 98:2914-22. [PMID: 20550904 DOI: 10.1016/j.bpj.2010.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/24/2010] [Accepted: 03/19/2010] [Indexed: 11/20/2022] Open
Abstract
Lateral diffusion of cell membrane constituents is a prerequisite for many biological functions. However, the diffusivity (or mobility) of a membrane-bound species can be influenced by many factors. To provide a better understanding of how the conformation and location of a membrane-bound biological molecule affect its mobility, herein we study the diffusion properties of a pH low insertion peptide (pHLIP) in model membranes using fluorescence correlation spectroscopy. It is found that when the pHLIP peptide is located on the membrane surface, its lateral diffusion is characterized by a distribution of diffusion times, the characteristic of which depends on the peptide/lipid ratio. Whereas, under conditions where pHLIP adopts a well-defined transmembrane alpha-helical conformation the peptide still exhibits heterogeneous diffusion, the distribution of diffusion times is found to be independent of the peptide/lipid ratio. Taken together, these results indicate that the mobility of a membrane-bound species is sensitive to its conformation and location and that diffusion measurement could provide useful information regarding the conformational distribution of membrane-bound peptides. Furthermore, the observation that the mobility of a membrane-bound species depends on its concentration may have important implications for diffusion-controlled reactions taking place in membranes.
Collapse
|
10
|
Macháň R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1377-91. [DOI: 10.1016/j.bbamem.2010.02.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
|
11
|
Pölönen H, Jansen M, Ikonen E, Ruotsalainen U. Automatic FRAP Analysis with Inhomogeneous Fluorescence Distribution and Movement Compensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 680:717-24. [DOI: 10.1007/978-1-4419-5913-3_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|