1
|
Development of a Methodology to Adapt an Equilibrium Buffer/Wash Applied to the Purification of hGPN2 Protein Expressed in Escherichia coli Using an IMAC Immobilized Metal Affinity Chromatography System. SEPARATIONS 2022. [DOI: 10.3390/separations9070164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Protein purification is a complex and non-standardized process; the fact that proteins have different structural types making it difficult to create a standard methodology to obtain them in a pure, soluble, and homogeneous form. The present study shows the selective development of a buffer suitable for proteins of interest that allows high concentrations of hGPN2 protein to be obtained with low polydispersion and high homogeneity and purity. By taking the different reagents used in the construction of different buffers as a basis and performing purifications using different additives in different concentrations to determine the optimal amounts, the developed process helps to minimize the bonds, maintain solubility, release the proteins present in inclusion bodies, and provide an adequate environment for obtaining high concentrations of pure protein. GPN proteins are of unknown function, have not been purified in high concentrations, and have been found as part of the RNA polymerase assembly; if they are not expressed, the cell dies, and overexpression of certain GPN proteins has been linked to decreased survival in patients with invasive ductal carcinoma breast cancer types ER+ and HER2+. The results of the present study show that the use of the buffer developed for recombinant hGPN2 protein expressed in Escherichia coli could be manipulated in order to isolate the protein in a totally pure form and without the use of protease inhibitor tablets. The resulting homogeneity and low polydispersion was corroborated by studies carried out using dynamic dispersion analysis. Thanks to these properties, it can be used for crystallography or structural genomics studies.
Collapse
|
2
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
3
|
Meng X, Yang L, Liu Y, Wang H, Shen Y, Wei D. Identification and Rational Engineering of a High Substrate‐Tolerant Leucine Dehydrogenase Effective for the Synthesis of L‐
tert
‐Leucine. ChemCatChem 2021. [DOI: 10.1002/cctc.202100414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
4
|
Gosselin EA, Noshin M, Black SK, Jewell CM. Impact of Excipients on Stability of Polymer Microparticles for Autoimmune Therapy. Front Bioeng Biotechnol 2021; 8:609577. [PMID: 33644005 PMCID: PMC7906284 DOI: 10.3389/fbioe.2020.609577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
Therapies for autoimmune diseases such as multiple sclerosis and diabetes are not curative and cause significant challenges for patients. These include frequent, continued treatments required throughout the lifetime of the patient, as well as increased vulnerability to infection due to the non-specific action of therapies. Biomaterials have enabled progress in antigen-specific immunotherapies as carriers and delivery vehicles for immunomodulatory cargo. However, most of this work is in the preclinical stage, where small dosing requirements allow for on-demand preparation of immunotherapies. For clinical translation of these potential immunotherapies, manufacturing, preservation, storage, and stability are critical parameters that require greater attention. Here, we tested the stabilizing effects of excipients on the lyophilization of polymeric microparticles (MPs) designed for autoimmune therapy; these MPs are loaded with peptide self-antigen and a small molecule immunomodulator. We synthesized and lyophilized particles with three clinically relevant excipients: mannitol, trehalose, and sucrose. The biophysical properties of the formulations were assessed as a function of excipient formulation and stage of addition, then formulations were evaluated in primary immune cell culture. From a manufacturing perspective, excipients improved caking of lyophilized product, enabled more complete resuspension, increased product recovery, and led to smaller changes in MP size and size distribution over time. Cocultures of antigen-presenting cells and self-reactive T cells revealed that MPs lyophilized with excipients maintained tolerance-inducing function, even after significant storage times without refrigeration. These data demonstrate that excipients can be selected to drive favorable manufacturing properties without impacting the immunologic properties of the tolerogenic MPs.
Collapse
Affiliation(s)
- Emily A. Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Maeesha Noshin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Sheneil K. Black
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Robert E Fischell Institute of Biomedical Devices, University of Maryland, College Park, College Park, MD, United States
- United States Department of Veterans Affairs, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S. Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Sci Rep 2020; 10:19574. [PMID: 33177626 PMCID: PMC7658984 DOI: 10.1038/s41598-020-76522-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Using SAXS and NMR spectroscopy, we herein provide a high-resolution description of the intrinsically disordered N-terminal domain (PNT, aa 1-406) shared by the Nipah virus (NiV) phosphoprotein (P) and V protein, two key players in viral genome replication and in evasion of the host innate immune response, respectively. The use of multidimensional NMR spectroscopy allowed us to assign as much as 91% of the residues of this intrinsically disordered domain whose size constitutes a technical challenge for NMR studies. Chemical shifts and nuclear relaxation measurements provide the picture of a highly flexible protein. The combination of SAXS and NMR information enabled the description of the conformational ensemble of the protein in solution. The present results, beyond providing an overall description of the conformational behavior of this intrinsically disordered region, also constitute an asset for obtaining atomistic information in future interaction studies with viral and/or cellular partners. The present study can thus be regarded as the starting point towards the design of inhibitors that by targeting crucial protein-protein interactions involving PNT might be instrumental to combat this deadly virus.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Edoardo Salladini
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Florence Center for Electron Nanoscopy (FloCEN), University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France.
| |
Collapse
|
6
|
Fan R, Shi X, Guo B, Zhao J, Liu J, Quan C, Dong Y, Fan S. The effects of L-arginine on protein stability and DNA binding ability of SaeR, a transcription factor in Staphylococcus aureus. Protein Expr Purif 2020; 177:105765. [PMID: 32987120 DOI: 10.1016/j.pep.2020.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
The SaeRS two-component system in Staphylococcus aureus controls the expression of a series of virulence factors, such as hemolysins, proteases, and coagulase. The response regulator, SaeR, belongs to the OmpR family with an N-terminal regulatory domain and a C-terminal DNA binding domain. To improve the production and stability of the recombinant protein SaeR, l-arginine (L-Arg) was added to the purification buffers. L-Arg enhanced the solubility and stability of the recombinant protein SaeR. The thermal denaturation temperature of SaeR in 10 mM L-Arg buffer was significantly increased compared to the buffer without L-Arg. Microscale Thermophoresis (MST) analysis results showed that the SaeR protein could bind to the P1 promoter under both phosphorylated and non-phosphorylated status in buffer containing 10 mM L-Arg. These results illustrate an effective method to purify SaeR and other proteins.
Collapse
Affiliation(s)
- Ruochen Fan
- School of Bioengineering, Dalian University of Technology, Dalian, China; Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Xian Shi
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Binmei Guo
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Jialu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China.
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Shengdi Fan
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
7
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Kheddo P, Bramham JE, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP. Investigating Liquid–Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl. Mol Pharm 2017; 14:2852-2860. [DOI: 10.1021/acs.molpharmaceut.7b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Priscilla Kheddo
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| | - Rebecca J. Dearman
- School
of Biological Sciences, The University of Manchester, Manchester, M13 9PL, U.K
| | - Shahid Uddin
- Formulation
Sciences, MedImmune Ltd., Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | | | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, U.K
| |
Collapse
|
9
|
Kheddo P, Cliff MJ, Uddin S, van der Walle CF, Golovanov AP. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy. MAbs 2016; 8:1245-1258. [PMID: 27589351 PMCID: PMC5058632 DOI: 10.1080/19420862.2016.1214786] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.
Collapse
Affiliation(s)
- Priscilla Kheddo
- a Manchester Institute of Biotechnology, University of Manchester , Manchester , UK.,b School of Chemistry, University of Manchester , Manchester , UK
| | - Matthew J Cliff
- a Manchester Institute of Biotechnology, University of Manchester , Manchester , UK
| | - Shahid Uddin
- c Formulation Sciences, MedImmune Ltd , Granta Park, Cambridge , UK
| | | | - Alexander P Golovanov
- a Manchester Institute of Biotechnology, University of Manchester , Manchester , UK.,b School of Chemistry, University of Manchester , Manchester , UK
| |
Collapse
|
10
|
Valero G, Moyano A. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction. Chirality 2016; 28:599-605. [PMID: 27362554 DOI: 10.1002/chir.22618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/04/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023]
Abstract
Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guillem Valero
- Departament de Química Orgànica, Universitat de Barcelona, Facultat de Química, Barcelona, Catalonia, Spain
| | - Albert Moyano
- Departament de Química Orgànica, Universitat de Barcelona, Facultat de Química, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Kheddo P, Golovanov AP, Mellody KT, Uddin S, van der Walle CF, Dearman RJ. The effects of arginine glutamate, a promising excipient for protein formulation, on cell viability: Comparisons with NaCl. Toxicol In Vitro 2016; 33:88-98. [PMID: 26873863 PMCID: PMC4837223 DOI: 10.1016/j.tiv.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/28/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The effects of an equimolar mixture of l-arginine and l-glutamate (Arg·Glu) on cell viability and cellular stress using in vitro cell culture systems are examined with reference to NaCl, in the context of monoclonal antibody formulation. Cells relevant to subcutaneous administration were selected: the human monocyte cell line THP-1, grown as a single cell suspension, and adherent human primary fibroblasts. For THP-1 cells, the mechanism of cell death caused by relatively high salt concentrations was investigated and effects on cell activation/stress assessed as a function of changes in membrane marker and cytokine (interleukin-8) expression. These studies demonstrated that Arg·Glu does not have any further detrimental effects on THP-1 viability in comparison to NaCl at equivalent osmolalities, and that both salts at higher concentrations cause cell death by apoptosis; there was no significant effect on measures of THP-1 cellular stress/activation. For adherent fibroblasts, both salts caused significant toxicity at ~400 mOsm/kg, although Arg·Glu caused a more precipitous subsequent decline in viability than did NaCl. These data indicate that Arg·Glu is of equivalent toxicity to NaCl and that the mechanism of toxicity is such that cell death is unlikely to trigger inflammation upon subcutaneous injection in vivo.
Collapse
Affiliation(s)
- Priscilla Kheddo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Kieran T Mellody
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Shahid Uddin
- MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | | | - Rebecca J Dearman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Tarnawski M, Barends TRM, Schlichting I. Structural analysis of an oxygen-regulated diguanylate cyclase. ACTA ACUST UNITED AC 2015; 71:2158-77. [PMID: 26527135 DOI: 10.1107/s139900471501545x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.
Collapse
Affiliation(s)
- Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Kachala M, Valentini E, Svergun DI. Application of SAXS for the Structural Characterization of IDPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:261-89. [PMID: 26387105 DOI: 10.1007/978-3-319-20164-1_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful structural method allowing one to study the structure, folding state and flexibility of native particles and complexes in solution and to rapidly analyze structural changes in response to variations in external conditions. New high brilliance sources and novel data analysis methods significantly enhanced resolution and reliability of structural models provided by the technique. Automation of the SAXS experiment, data processing and interpretation make solution SAXS a streamline tool for large scale structural studies in molecular biology. The method provides low resolution macromolecular shapes ab initio and is readily combined with other structural and biochemical techniques in integrative studies. Very importantly, SAXS is sensitive to macromolecular flexibility being one of the few structural techniques applicable to flexible systems and intrinsically disordered proteins (IDPs). A major recent development is the use of SAXS to study particle dynamics in solution by ensemble approaches, which allow one to quantitatively characterize flexible systems. Of special interest is the joint use of SAXS with solution NMR, given that both methods yield highly complementary structural information, in particular, for IDPs. In this chapter, we present the basics of SAXS and also consider protocols of the experiment and data analysis for different scenarios depending on the type of the studied object. These include ab initio shape reconstruction, validation of available high resolution structures and rigid body modelling for folded macromolecules and also characterisation of flexible proteins with the ensemble methods. The methods are illustrated by examples of recent applications and further perspectives of the integrative use of SAXS with NMR in the studies of IDPs are discussed.
Collapse
Affiliation(s)
- Michael Kachala
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany. .,Department of Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146, Hamburg, Germany.
| | - Erica Valentini
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany.,Department of Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany.
| |
Collapse
|
14
|
Kheddo P, Tracka M, Armer J, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP. The effect of arginine glutamate on the stability of monoclonal antibodies in solution. Int J Pharm 2014; 473:126-33. [PMID: 24992318 PMCID: PMC4162492 DOI: 10.1016/j.ijpharm.2014.06.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/21/2022]
Abstract
Finding excipients which mitigate protein self-association and aggregation is an important task during formulation. Here, the effect of an equimolar mixture of l-Arg and l-Glu (Arg·Glu) on colloidal and conformational stability of four monoclonal antibodies (mAb1–mAb4) at different pH is explored, with the temperatures of the on-set of aggregation (Tagg) and unfolding (Tm1) measured by static light scattering and intrinsic fluorescence, respectively. Arg·Glu increased the Tagg of all four mAbs in concentration-dependent manner, especially as pH increased to neutral. Arg·Glu also increased Tm1 of the least thermally stable mAb3, but without similar direct effect on the Tm1 of other mAbs. Raising pH itself from 5 to 7 increased Tm1 for all four mAbs. Selected mAb formulations were assessed under accelerated stability conditions for the monomer fraction remaining in solution after storage. The aggregation of mAb3 was suppressed to a greater extent by Arg·Glu than by Arg·HCl. Furthermore, Arg·Glu suppressed the aggregation of mAb1 at neutral pH such that the fraction monomer was near to that at the more typical formulation pH of 5.5. We conclude that Arg·Glu can suppress mAb aggregation with increasing temperature/pH and, importantly, under accelerated stability conditions at weakly acidic to neutral pH.
Collapse
Affiliation(s)
- Priscilla Kheddo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | | - Rebecca J Dearman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Shahid Uddin
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | | | - Alexander P Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|