1
|
Kinetic Model of the Action of 17α-Ethynylestradiol on the Capacitation of Mouse Sperm, Monitored by HPLC-MS/MS. Catalysts 2020. [DOI: 10.3390/catal10010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
17α-Ethynylestradiol (EE2), a synthetic estrogen used in contraceptive pills, is resistant to hepatic degradation and is excreted in the urine. It is chemically stable and has a negative impact on the endocrine system. The aim of this work was to mathematically describe the possible interaction of EE2 (200, 20, and 2 μg/L) with sperm estrogen receptors during sperm maturation, which is called capacitation. The concentrations of the unbound EE2 remaining in capacitating medium during 180 min of sperm capacitation were determined at 30 min intervals by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS) and the data obtained (relative concentrations Bt) were subjected to kinetic analysis. The suggested kinetic schema was described by the system of differential equations with the optimization of rate constants used to calculate the theoretical Bt values. Optimal parameters (overall rate constants K1–K5 and molar ratio n) were determined by searching the minimum of absolute values of the difference between theoretical and experimental Bt values. These values were used for the design of the theoretical B(t) curves which fit to experimental points. The proposed kinetic model assumes the formation of an unstable adduct between EE2 and the receptor in cytoplasm, which acts as an autocatalytic agent and gradually decomposes.
Collapse
|
2
|
Bosakova T, Tockstein A, Sebkova N, Simonik O, Adamusova H, Albrechtova J, Albrecht T, Bosakova Z, Dvorakova-Hortova K. New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling. Int J Mol Sci 2018; 19:ijms19124011. [PMID: 30545117 PMCID: PMC6321110 DOI: 10.3390/ijms19124011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022] Open
Abstract
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation—called capacitation—and sperm–egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
Collapse
Affiliation(s)
- Tereza Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Antonin Tockstein
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Natasa Sebkova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic.
| | - Hana Adamusova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Jana Albrechtova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Tomas Albrecht
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
| |
Collapse
|
3
|
In silico prediction of microRNAs on fluoride induced sperm toxicity in mice. Food Chem Toxicol 2016; 98:34-49. [PMID: 27012587 DOI: 10.1016/j.fct.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023]
Abstract
Fluorosis is an endemic global problem causing male reproductive impairment. F mediates male reproductive toxicity in mice down-regulating 63 genes involved in diverse biological processes - apoptosis, cell cycle, cell signaling, chemotaxis, electron transport, glycolysis, oxidative stress, sperm capacitation and spermatogenesis. We predicted the miRNAs down-regulating these 63 genes using TargetScan, DIANA and MicroCosm. The prediction tools identified 3059 miRNAs targeting 63 genes. Of the predicted interactions, 11 miRNAs (mmu-miR-103, -107, -122, -188a, -199a-5p, -205, -340-5p, -345-3p, -452-5p, -499, -878-3p) were commonly found in the three tools utilized and seven miRNAs (miR-9-5p, miR-511-3p, miR-7b-5p, miR-30e-5p, miR-17-5p, miR-122-5p and miR-541-5p) targeting six genes (Traf3, Rock2, Rgs8, Atp1b2, Cacna2d1 and Aldoa) were already validated experimentally in mice. The miRNA-mRNA network of the predicted miRNAs with its respective targets revealed the complex interaction within a biological process leading to sperm dysfunction on exposure to F. Our findings not only suggest that the predicted miRs furnish evidence, but also have the potential to serve as non-invasive biomarkers on F-induced sperm dysfunction. Our data contribute towards elucidating the function of miRNAs in the fluoride induced infertility. miRNA molecular pathways in F intoxication will open new avenues on the use of antagomirs in recovering fertility.
Collapse
|