1
|
Arakawa T, Nakagawa M, Sakuma C, Tomioka Y, Kurosawa Y, Ejima D, Akuta T. Electrophoresis, a transport technology that transitioned from moving boundary method to zone method. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:1-13. [PMID: 38160206 DOI: 10.1007/s00249-023-01694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Gel electrophoresis, a transport technology, is one of the most widely used experimental methods in biochemical and pharmaceutical research and development. Transport technologies are used to determine hydrodynamic or electrophoretic properties of macromolecules. Gel electrophoresis is a zone technology, where a small volume of sample is applied to a large separation gel matrix. In contrast, a seldom-used electrophoresis technology is moving boundary electrophoresis, where the sample is present throughout the separation phase or gel matrix. While the zone method gives peaks of separating macromolecular solutes, the moving boundary method gives a boundary between solute-free and solute-containing phases. We will review electrophoresis as a transport technology of zone and moving boundary methods and describe its principles and applications.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd., San Diego, CA, 92130, USA.
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-Shi, Ibaraki, 318-0004, Japan
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-Shi, Ibaraki, 318-0004, Japan
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-Shi, Ibaraki, 318-0004, Japan
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-Shi, Ibaraki, 318-0004, Japan
| | - Daisuke Ejima
- Sysmex Corporation, Technology Innovation, 1548 Shimo-Okutomi, Sayama, Saitama, 350-1332, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-Shi, Ibaraki, 318-0004, Japan
| |
Collapse
|
2
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
3
|
Li N, Xue L, Mai X, Wang P, Zhu C, Han X, Xie Y, Wang B, Ge Y, Zhang Y, Sun J. Transfection of clMagR/clCry4 imparts MR-T 2 imaging contrast properties to living organisms ( E. coli) in the presence of Fe 3+ by endogenous formation of iron oxide nanoparticles. Front Mol Biosci 2023; 10:1119356. [PMID: 36876047 PMCID: PMC9981785 DOI: 10.3389/fmolb.2023.1119356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Rapid development of medical imaging, such as cellular tracking, has increased the demand for "live" contrast agents. This study provides the first experimental evidence demonstrating that transfection of the clMagR/clCry4 gene can impart magnetic resonance imaging (MRI) T2-contrast properties to living prokaryotic Escherichia coli (E. coli) in the presence of Fe3+ through the endogenous formation of iron oxide nanoparticles. The transfected clMagR/clCry4 gene markedly promoted uptake of exogenous iron by E. coli, achieving an intracellular co-precipitation condition and formation of iron oxide nanoparticles. This study will stimulate further exploration of the biological applications of clMagR/clCry4 in imaging studies.
Collapse
Affiliation(s)
- Nuan Li
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| | - Xiaoli Mai
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.,Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Chenzhuo Zhu
- Southeast University-Monash University Joint Graduate School, Southeast University, Suzhou, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, China
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yewei Zhang
- The Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Shen Y, Chen YZ, Zhang CX. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. PEST MANAGEMENT SCIENCE 2021; 77:365-377. [PMID: 32741141 DOI: 10.1002/ps.6026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/24/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is the most destructive rice insect pest. To exploit potential target genes for applications in transgenic rice to control this sap-sucking insect pest, three ferritin genes were functionally characterized in this study. RESULTS In this study, three ferritin genes, that is, ferritin 1 Heavy Chain (NlFer1), ferritin 2 Light Chain (NlFer2) and soma ferritin (Nlsoma-Fer), were identified from BPH. Tissue-specific analyses showed that all three genes were highly expressed in the gut. Although double-stranded RNA injection-mediated RNA inference (RNAi) of Nlsoma-Fer expression resulted in only < 14% mortality in BPH, knockdown of NlFer1 or NlFer2 led to retarded growth and 100% mortality in young nymphs, and downregulation of NlFer1 and NlFer2 in newly emerged female adults caused undeveloped ovaries and severely inhibited oocyte growth, resulting in extremely low fecundity and a zero hatching rate. Knockdown of NlFer1 and NlFer2 caused similar phenotypes in BPH, indicating that they function together, as in many other animals. The results demonstrated that NlFer1 and NlFer2 were essential for BPH development and reproduction. BPHs showed high sensitivity to both dsNlFer1 and dsNlFer2, and injection of only 0.625 ng dsNlFer1 per BPH resulted in 100% mortality. Additionally, the effectiveness of feeding dsNlFer1 and dsNlFer2 to BPH nymphs was further proven. CONCLUSION NlFer1 and NlFer2 are essential for BPH development and reproduction, and the insect is highly sensitive to their depletion, suggesting that the two gut-highly-expressed genes are promising candidates for application in RNAi-based control of this destructive pest.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Geiser DL, Thai TN, Love MB, Winzerling JJ. Iron and Ferritin Deposition in the Ovarian Tissues of the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5586715. [PMID: 31606748 PMCID: PMC6790249 DOI: 10.1093/jisesa/iez089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 05/16/2023]
Abstract
Dengue, yellow fever, and Zika are viruses transmitted by yellow fever mosquito, Aedes aegypti [Linnaeus (Diptera: Culicidae)], to thousands of people each year. Mosquitoes transmit these viruses while consuming a blood meal that is required for oogenesis. Iron, an essential nutrient from the blood meal, is required for egg development. Mosquitoes receive a high iron load in the meal; although iron can be toxic, these animals have developed mechanisms for dealing with this load. Our previous research has shown iron from the blood meal is absorbed in the gut and transported by ferritin, the main iron transport and storage protein, to the ovaries. We now report the distribution of iron and ferritin in ovarian tissues before blood feeding and 24 and 72 h post-blood meal. Ovarian iron is observed in specific locations. Timing post-blood feeding influences the location and distribution of the ferritin heavy-chain homolog, light-chain homolog 1, and light-chain homolog 2 in ovaries. Understanding iron deposition in ovarian tissues is important to the potential use of interference in iron metabolism as a vector control strategy for reducing mosquito fecundity, decreasing mosquito populations, and thereby reducing transmission rates of vector-borne diseases.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Theresa N Thai
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Maria B Love
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|