1
|
de Groot A, Fan Z, Vissers T, Verdouw H, Bollen R, Bijl E, Sagis L. Casein micelle reassembly affects the interfacial properties of fluid-fluid interfaces. J Colloid Interface Sci 2025; 686:318-326. [PMID: 39903979 DOI: 10.1016/j.jcis.2025.01.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
HYPOTHESIS Precision fermentation is a novel approach to produce microbial-based caseins, which promises to be important in the production of animal-free dairy. Caseins are important stabilizers in foam- and emulsion-based dairy products. A solid understanding of how caseins behave at the air-water and oil-water interfaces is essential for the development of new products based on microbial-based caseins. Here, we compared the interfacial behavior of air-water and oil-water interfaces stabilized by bovine casein micelles (CM), sodium caseinate, and reassembled casein micelles (RCM) made from sodium caseinate. The effects of reassembly are important to assess, since precision fermentation produces individual casein fractions (i.e., caseinate) instead of micelles. EXPERIMENTS The micellar structure of RCM and CM increased the interfacial stiffness of oil-water interfaces compared to caseinate and -free caseinate. A combination of the general stress decomposition and Fourier-transform rheology revealed that the micellar structure is able to resist the network weakening by polar oils better than -free caseinate through the presence of interfacial aggregates. The behavior of RCM and CM at the air-water interfaces was different from oil-water interfaces. RCM did not have higher interfacial stiffness compared to a -free caseinate sample, while CM did. Surprisingly, imaging the microstructure with atomic force microscopy (AFM) on Langmuir-Blodgett films did not reveal many differences in microstructure between RCM and CM. However, AFM showed an increased interfacial connectivity in all samples containing compared to -free samples. FINDINGS This study showed that oil-water interfacial viscoelasticity is dominated by aggregated casein due to a high subphase polarity. Hence, the highly aggregated RCM successfully mimicked the oil-water functionality of CM. Aggregation was not as important for air-water which resulted in a different functionality of RCM and CM.
Collapse
Affiliation(s)
- Anteun de Groot
- Laboratory of Physics and Physical chemistry of foods, Waginingen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands; Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Zekun Fan
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Tessa Vissers
- Laboratory of Physics and Physical chemistry of foods, Waginingen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Hilde Verdouw
- Laboratory of Physics and Physical chemistry of foods, Waginingen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Ralf Bollen
- Laboratory of Physics and Physical chemistry of foods, Waginingen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Etske Bijl
- Dairy Science and Technology, Food Quality and Design group, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Leonard Sagis
- Laboratory of Physics and Physical chemistry of foods, Waginingen University, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands.
| |
Collapse
|
2
|
Gebhardt R, Hohn C, Asaduzzaman M. Stabilizing interactions of casein microparticles after a thermal post-treatment. Food Chem 2024; 450:139369. [PMID: 38653051 DOI: 10.1016/j.foodchem.2024.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Casein microparticles from milk are important carrier materials for bioactive substances with stability and swelling properties that can be influenced by heat treatment. Microparticles produced by depletion flocculation and film drying remain stable in acidic media but swell and disintegrate under slightly alkaline conditions. Heat treatment after formation can stabilize the microparticles via a disulfide bridge network and newly formed hydrophobic contacts. Temperatures >60 °C are required so that denatured whey protein initiate formation of disulfide bridges via thiol exchange reactions. The particles then swell in a two-step process and exhibit an overshooting effect. If formation of disulphide bridges is prevented during heat treatment by adding N-methylmaleimide, overshooting swelling disappears and microparticles continue to expand instead. The analysis with parallel system dynamics models is based on the swelling of uncross-linked caseins, which is limited by the expansion capacity of cross-linked caseins.
Collapse
Affiliation(s)
- Ronald Gebhardt
- RWTH Aachen University, Chair of Soft Matter Process Engineering (AVT.SMP), Germany.
| | - Calvin Hohn
- RWTH Aachen University, Chair of Soft Matter Process Engineering (AVT.SMP), Germany
| | - Md Asaduzzaman
- RWTH Aachen University, Chair of Soft Matter Process Engineering (AVT.SMP), Germany
| |
Collapse
|
3
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
4
|
Raynes JK, Mata J, Wilde KL, Carver JA, Kelly SM, Holt C. Structure of biomimetic casein micelles: Critical tests of the hydrophobic colloid and multivalent-binding models using recombinant deuterated and phosphorylated β-casein. J Struct Biol X 2024; 9:100096. [PMID: 38318529 PMCID: PMC10840362 DOI: 10.1016/j.yjsbx.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic κ-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone β-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant β-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.
Collapse
Affiliation(s)
- Jared K. Raynes
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC 3031, Australia
- All G Foods, Waterloo, NSW 2006, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sharon M. Kelly
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Carl Holt
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
5
|
Wang T, Li Y, De Witte F, Rebry F, Li H, Vermeir P, Dewettinck K, Van der Meeren P. Influence of calcium concentration on the re-assembly of sodium caseinate into casein micelles and on their renneting behavior. Food Res Int 2024; 180:113991. [PMID: 38395543 DOI: 10.1016/j.foodres.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Inducing the spontaneous aggregation from casein molecules (i.e. αs1, αs2, β, and κ-casein) into re-assembled casein micelles (RCMs) through the addition of salts as an alternative to native casein micelles, has garnered increasing attention in recent years. In this investigation, re-assembled casein micelles were generated by adding varying amounts of calcium, phosphate, and citrate ions to a sodium caseinate dispersion. The formed micelles were further characterized in terms of particle size, optical density, and partitioning of calcium ions and caseins. Besides, their small-angle X-ray scattering (SAXS) profiles and renneting properties were evaluated. The observations revealed that the particle size and optical density of RCMs increased with the continuous addition of salts, while the micellar yield improved and could exceed 85 %. Moreover, the quantity of individual casein molecules that contributed to the creation of micelles was in concordance with their level of phosphorylation (i.e. αs2-casein > αs1-casein > β-casein > κ-casein). Mineral analysis results and SAXS scattering profiles confirmed that the added calcium ions acted as cross-linkers and participated in the construction of calcium phosphate nanoclusters. The renneting ability of RCMs was primarily dependent upon the colloidal calcium content per gram of micellar casein.
Collapse
Affiliation(s)
- Teng Wang
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| | - Yadong Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Fien De Witte
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ferre Rebry
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Hao Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
6
|
Ahmadi E, Markoska T, Huppertz T, Vasiljevic T. Structural Properties of Casein Micelles with Adjusted Micellar Calcium Phosphate Content. Foods 2024; 13:322. [PMID: 38275688 PMCID: PMC10815582 DOI: 10.3390/foods13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Micellar calcium phosphate (MCP) content of skim milk was modified by pH adjustment followed by dialysis. Turbidity, casein micelle size and partitioning of Ca and caseins between the colloidal and soluble phases of milk were determined. Protein structure was characterised by Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H NMR), whereas organic and inorganic phosphorus were studied by phosphorus-31 nuclear magnetic resonance (31P NMR). The sample with the lowest MCP content (MCP7) exhibited the smallest particle size and turbidity, measuring 83 ± 8 nm and 0.08 ± 0.01 cm-1, respectively. Concentrations of soluble caseins increased with decreasing MCP levels. At ~60% MCP removal, FTIR analysis indicated a critical stage of structural rearrangement and 31P NMR analysis showed an increase in signal intensity for Ca-free Ser-P, which further increased as MCP concentration was further reduced. In conclusion, this study highlighted the importance of MCP in maintaining micellar structure and its impact on the integrity of casein micelle.
Collapse
Affiliation(s)
- Elaheh Ahmadi
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sport, Health and Engineering, Victoria University, Melbourne, VIC 3001, Australia; (E.A.); (T.M.); (T.H.)
| | - Tatijana Markoska
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sport, Health and Engineering, Victoria University, Melbourne, VIC 3001, Australia; (E.A.); (T.M.); (T.H.)
| | - Thom Huppertz
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sport, Health and Engineering, Victoria University, Melbourne, VIC 3001, Australia; (E.A.); (T.M.); (T.H.)
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sport, Health and Engineering, Victoria University, Melbourne, VIC 3001, Australia; (E.A.); (T.M.); (T.H.)
| |
Collapse
|
7
|
Chen R, Song Y, Wang Z, Ji H, Du Z, Ma Q, Yang Y, Liu X, Li N, Sun Y. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int J Biol Macromol 2023; 251:126288. [PMID: 37582436 DOI: 10.1016/j.ijbiomac.2023.126288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The surfactant-macromolecule interactions (SMI) are one of the most critical topics for scientific research and industrial application. Small-angle X-ray scattering (SAXS) is a powerful tool for comprehensively studying the structural and conformational features of macromolecules at a size ranging from Angstroms to hundreds of nanometers with a time-resolve in milliseconds scale. The SAXS integrative techniques have emerged for comprehensively analyzing the SMI and the structure of their complex in solution. Here, the various types of emerging interactions of surfactant with macromolecules, such as protein, lipid, nuclear acid, polysaccharide and virus, etc. have been systematically reviewed. Additionally, the principle of SAXS and theoretical models of SAXS for describing the structure of SMI as well as their complex has been summarized. Moreover, the recent developments in the applications of SAXS for charactering the structure of SMI have been also highlighted. Prospectively, the capacity to complement artificial intelligence (AI) in the structure prediction of biological macromolecules and the high-throughput bioinformatics sequencing data make SAXS integrative structural techniques expected to be the primary methodology for illuminating the self-assembling dynamics and nanoscale structure of SMI. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Qingwen Ma
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Ying Yang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xingxun Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, CAS, Shanghai, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Franceschi P, Sun W, Malacarne M, Luo Y, Formaggioni P, Martuzzi F, Summer A. Distribution of Calcium, Phosphorus and Magnesium in Yak (Bos grunniens) Milk from the Qinghai Plateau in China. Foods 2023; 12:foods12071413. [PMID: 37048234 PMCID: PMC10093724 DOI: 10.3390/foods12071413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This research was aimed to assess the distribution of calcium, phosphorus and magnesium within the casein micelles of yak milk. To this aim, nine bulk yak milk samples (Y-milk), collected in three yak farms located in the Chinese province of Qinghai, were compared to nine bulk cow milk samples used as a reference. A quite similar content of colloidal calcium (0.80 vs. 0.77 mmol/g of casein; p > 0.05), a higher content of magnesium (0.05 vs. 0.04 mmol/g of casein; p ≤ 0.01) and a lower content of colloidal phosphorus (0.48 vs. 0.56 mmol/g of casein; p ≤ 0.01) between yak and cow casein micelles were found. Moreover, the yak casein micelles showed a lower value of prosthetic phosphorus (0.20 vs. 0.26 mmol/g of casein; p ≤ 0.05) compared to the cow micelles. The lower values of colloidal and prosthetic phosphorus in yak casein micelles suggest that the yak casein is less phosphorylated than the cow one.
Collapse
|
9
|
Gebhardt R, Pütz T, Schulte J. Nearly Reversible Expansion and Shrinkage of Casein Microparticles Triggered by Extreme pH Changes. MICROMACHINES 2023; 14:678. [PMID: 36985085 PMCID: PMC10058559 DOI: 10.3390/mi14030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Solvent flows in the fL/s range across the total surface of a casein microparticle cause its expansion and shrinkage. Microparticles prepared from the milk protein casein have a porous and flexible inner structure with water-filled channels and cavities. Solvent uptake occurs in two phases and results in disintegration if de-swelling is not triggered by acidification. So far, nothing is known about the reversibility of the swelling/de-swelling steps. We performed pH jump experiments between pH 11 and pH 1 on a single micro-particle and analyzed the swelling-induced size changes with system dynamics modeling. Both the swelling steps and the subsequent de-swelling process proceed reversibly and at an unchanged rate over a sequence of at least three pH exchange cycles. We observed that the duration of the first swelling step increased during the sequence, while the second step became shorter. Both of the time intervals are negatively correlated, while a statistical evaluation of only one swelling cycle for an ensemble of microparticles with different stabilities did not reveal any significant correlation between the two parameters. Our results indicate that the pH-induced swelling/shrinkage of casein microparticles is, to a large extent, reversible and only slightly influenced by the acid-induced decomposition of colloidal calcium phosphate.
Collapse
|
10
|
Garcia A, Alting A, Huppertz T. Disruption of casein micelles by calcium sequestering salts: from observations to mechanistic insights. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y. Study on internal structure of casein micelles in reconstituted skim milk powder. Int J Biol Macromol 2022; 224:437-452. [DOI: 10.1016/j.ijbiomac.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
12
|
Rheological and structural properties of acid-induced milk gels as a function of β-casein phenotype. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Daniloski D, McCarthy NA, Huppertz T, Vasiljevic T. What is the impact of amino acid mutations in the primary structure of caseins on the composition and functionality of milk and dairy products? Curr Res Food Sci 2022; 5:1701-1712. [PMID: 36212081 PMCID: PMC9535159 DOI: 10.1016/j.crfs.2022.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
The impact of amino acid mutations within the peptide structure of bovine milk protein is important to understand as it can effect processability and subsequently effect its physiological properties. Genetic polymorphisms of bovine caseins can influence the chemical, structural, and technological properties, including casein micelle morphology, calcium distribution, network creation upon gelation, and surface activity. The A1 and A2 genetic variants of β-casein have recently acquired growing attention from both academia and industry, prompting new developments in the area. The difference between these two genetic variants is the inclusion of either proline in β-casein A2 or histidine in β-casein A1 at position 67 in the peptide chain. The aim of this review was to examine the extent to which milk and ingredient functionality is influenced by β-casein phenotype. One of the main findings of this review was although β-casein A1 was found to be the dominant variant in milks with superior acid gelation and rennet coagulation properties, milks comprised of β-casein A2 possessed greater emulsion and foam formation capabilities. The difference in the casein micelle assembly, hydrophobicity, and chaperone activity of caseins may explain the contrast in the functionality of milks containing β-casein from either A1 or A2 families. This review provides new insights into the subtle variations in the physicochemical properties of bovine milks, which could potentially support dairy producers in the development of new dairy products with different functional properties. Impact of β- and other caseins on the casein micelle structure and functionality. Proline and histidine in β-caseins play a key role in casein micelle conformation. Chaperone activity of β-casein A2 towards heat-induced aggregation of whey protein. Gels prepared of milks with β-casein A1 possess a denser and firmer structure. Ordered structure of β-casein A2 led to improved emulsion and foam formation.
Collapse
Affiliation(s)
- Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC, 8001, Australia
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Noel A. McCarthy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Cork, Ireland
| | - Thom Huppertz
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC, 8001, Australia
- FrieslandCampina, Amersfoort, the Netherlands
- Wageningen University & Research, Wageningen, the Netherlands
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC, 8001, Australia
- Corresponding author.
| |
Collapse
|
14
|
Tieu S, Harte F. Effect of mild thermal and pH changes on the sol-gel transition in skim milk. J Dairy Sci 2022; 105:7926-7939. [PMID: 35965122 DOI: 10.3168/jds.2021-21299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
The present work aimed to improve acid and rennet milk gelation properties with mild thermal and pH changes to skim milk, with emphasis on heating temperatures below the denaturation temperature of whey proteins. We hypothesized the heat-induced, pH-dependent micellar changes, namely the shifts in casein and calcium equilibria between the micellar (or colloidal) and serum phases, result in firmer acid and rennet milk gels and reduced gelation time. Homogenized, pasteurized skim milk was adjusted to pH values in the range of 6.4 to 7.3, heated at temperatures in the range of 50 to 80°C, cooled to refrigeration temperature, and restored to native pH (pH 6.7). Then, acid and rennet gels were made by the addition of glucono-δ-lactone and chymosin, respectively. We monitored the storage modulus (G', Pa) during gel formation with small-amplitude oscillatory shear and the gelation time and maximum G' (G'max, Pa) of acid and rennet gels, were measured at 3 and 2 h, respectively. When skim milk was heated at 50°C for 15 min, there was a 58 and 163% increase in the G'max of acid and rennet gels, respectively, as the pH at heating was raised from pH 6.7 to 7.3. Increases in gel strength were greater for skim milk heated at 60°C for 15 min. There was a positive correlation between G'max of acid gels and the heat-induced casein protein exchanges between the micellar and serum phases on heating milk at pH in the range from 6.4 to 7.3 (r = 0.78). We also found positive correlations between the variation in G'max of rennet gels with the heat-induced, pH-dependent migration of casein (r = 0.83) and calcium (r = 0.80) from the micelle into the serum phase, as determined by PAGE and atomic emission spectroscopy. Under these mild heating temperatures (50 and 60°C), rennet coagulation time was significantly reduced from 45 ± 5 to 27 ± 3 min when the pH at heating was raised from pH 6.7 to 7.3. The ability to enhance milk gelation properties with a scalable pretreatment allows for the expression of novel functionality of casein.
Collapse
Affiliation(s)
- Stiphany Tieu
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - Federico Harte
- Department of Food Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
15
|
Wang Q, Ma Y. Characterization of calcium phosphate nanoparticles sequestered by phosphopeptides in response to heat treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Horvath A, Fuxreiter M, Vendruscolo M, Holt C, Carver JA. Are casein micelles extracellular condensates formed by liquid-liquid phase separation? FEBS Lett 2022; 596:2072-2085. [PMID: 35815989 DOI: 10.1002/1873-3468.14449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Casein micelles are extracellular polydisperse assemblies of unstructured casein proteins. Caseins are the major component of milk. Within casein micelles, casein molecules are stabilised by binding to calcium phosphate nanoclusters and, by acting as molecular chaperones, through multivalent interactions. In light of such interactions, we discuss whether casein micelles can be considered as extracellular condensates formed by liquid-liquid phase separation. We analyse the sequence, structure and interactions of caseins in comparison to proteins forming intracellular condensates. Furthermore, we review the similarities between caseins and small heat-shock proteins whose chaperone activity is linked to phase separation of proteins. By bringing these observations together, we describe a regulatory mechanism for protein condensates, as exemplified by casein micelles.
Collapse
Affiliation(s)
- Attila Horvath
- John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B 35131, Padova, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
17
|
Sheng B, Thesbjerg MN, Glantz M, Paulsson M, Nielsen SRD, Poulsen NA, Larsen LB. Phosphorylation and glycosylation isoforms of bovine κ-casein variant E in homozygous Swedish Red cow milk detected by liquid chromatography-electrospray ionization mass spectrometry. J Dairy Sci 2022; 105:1959-1965. [PMID: 34998567 DOI: 10.3168/jds.2021-21172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Variations in the phosphorylation and glycosylation patterns of the common κ-casein (CN) variants A and B have been explored, whereas studies on variant E heterogeneity are scarce. This study reports for the first time the detailed phosphorylation and glycosylation pattern of the κ-CN variant E in comparison with variants A and B. Individual cow milk samples representing κ-CN genotype EE (n = 12) were obtained from Swedish Red cows, and the natural posttranslational modifications of its κ-CN were identified and quantified by liquid chromatography-electrospray mass spectrometry. In total, 12 unique isoform masses of κ-CN variant E were identified. In comparison, AA and BB milk consisted of 14 and 17 unique isoform masses, respectively. The most abundant κ-CN E isoform detected in the EE milk was the monophosphorylated, unglycosylated [1P 0G, ∼70%; where P indicates phosphorylation from single to triple phosphorylation (1-3P), and G indicates glycosylation from single to triple glycosylation (1-3G)] form, followed by diphosphorylated, unglycosylated (2P 0G, ∼12%) form, resembling known patterns from variants A and B. However, a clear distinction was the presence of the rare triphosphorylated, nonglycosylated (3P 0G, ∼0.05%) κ-CN isoform in the EE milk. All isoforms detected in variant E were phosphorylated, giving a phosphorylation degree of 100%. This is comparable with the phosphorylation degree of variants A and B, being also almost 100%, though with very small amounts of nonphosphorylated, glycosylated isoforms detected. The glycosylation degree of variant E was found to be around 17%, a bit higher than observed for variant B (around 14%), and higher than variant A (around 7%). Among glycosylation, the glycan e was the most common type identified for all 3 variants, followed by c/d (straight and branched chain trisaccharides, respectively), and b. In contrast to κ-CN variants A and B, no glycan of type a was found in variant E. Taken together, this study shows that the posttranslational modification pattern of variant E resembles that of known variants to a large extent, but with subtle differences.
Collapse
Affiliation(s)
- Bulei Sheng
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Martin N Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Maria Glantz
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Marie Paulsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - S Ren D Nielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Nina A Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Lotte B Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| |
Collapse
|
18
|
Quantitative multivalent binding model of the structure, size distribution and composition of the casein micelles of cow milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
|
20
|
Sun Y, Tai Z, Yan T, Dai Y, Hemar Y, Li N. Unveiling the structure of the primary caseinate particle using small-angle X-ray scattering and simulation methodologies. Food Res Int 2021; 149:110653. [PMID: 34600655 DOI: 10.1016/j.foodres.2021.110653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
The low-resolution structure of casein (CN) clusters in sodium caseinate (NaCas) solution and its conformational dynamics were obtained by size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and native PAGE revealed that the casein clusters consisted predominantly of α- and β-CN complexes, and a trace amount of κ-CN. The AUC analysis indicated that the casein clusters were composed of 34.6% of casein monomers, 19.2%, 20.4%, and 25.8% of complexes with molar weight (Mw) of ~50.3, ~70.6, and ~133 kDa, respectively. The volume fractions of components in casein clusters were quantified as 64.3% of αs1-β-αs2-CN, 22.3% of αs1-CN, 8.5% of αs2-CN, and 4.4% of αs1-αs2-CN, respectively. The ensemble optimization method (EOM) gave a fitting result where αs1-β-αs2-CN species coexisted in ~35.3% under compact conformation and ~64.7% in elongated conformation in solution. The three-dimensional structures of αs1-β-αs2-CN from EOM showed a good overlay on the casein clusters ab initio model obtained from DAMMIN and DAMMIX program. MD simulations revealed that αs1-β-αs2-CN underwent a conformational change from the elongated state into the compact state within the initial 200 ns of simulations. The addition of nonionic surfactants affected little the backbone-to-backbone interactions in the formation of the casein clusters. We propose that αs1-CN, β-CN, αs2-CN, and κ-CN associated in consecutive steps into casein clusters, and a trace of κ-CN may be located at the surface of the assemblies limiting the growth of casein aggregates.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China.
| | - Zhonghong Tai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Tingting Yan
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yiqi Dai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yacine Hemar
- Catalyst Tec Limited., 16 Beatrice Tinsley Cresecnt, Rosedale 0632, Auckland, New Zealand; International Joint Research Laboratory for Functional Dairy Protein Ingredients, U.S.-China, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai, Shanghai 201210, People's Republic of China.
| |
Collapse
|
21
|
Huppertz T, Heck J, Bijl E, Poulsen NA, Larsen LB. Variation in casein distribution and mineralisation in the milk from Holstein-Friesian cows. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
The heterogeneous substructure of casein micelles evidenced by SAXS and NMR in demineralized samples. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Azarakhsh F, Divsalar A, Saboury AA, Eidi A. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
|
25
|
Holt C. A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:847-866. [PMID: 33866398 DOI: 10.1007/s00249-021-01533-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Caseins (αS1, αS2, β and κ) are the main protein fraction of bovine milk. Together with nanoclusters of amorphous calcium phosphate (CaP) and divalent cations, they combine to form a polydisperse distribution of particles called casein micelles. A casein micelle model is proposed which is consistent with the way in which intrinsically disordered proteins interact through predominantly polar, short, linear, motifs. Using the model, an expression is derived for the size distribution of casein micelles formed when caseins bind to the CaP nanoclusters and the complexes further associate with each other and the remaining mixture of free caseins. The result is a refined coat-core model in which the core is formed mainly by the nanocluster complexes and the coat is formed exclusively by the free caseins. Example calculations of the size distribution and surface composition of an average bovine milk are compared with experiment. The average size, size distribution and surface composition of the micelles is shown to depend on the affinity of the nanocluster complexes for each other in competition with their affinity for free caseins, and on the concentrations of free caseins, calcium ions and other salts in the continuous phase.
Collapse
Affiliation(s)
- Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
26
|
|
27
|
Beltrán‐Espinoza JA, Domínguez‐Lujan B, Gutiérrez‐Méndez N, Chávez‐Garay DR, Nájera‐Domínguez C, Leal‐Ramos MY. The impact of chymosin and plant‐derived proteases on the acid‐induced gelation of milk. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Grewal MK, Vasiljevic T, Huppertz T. Influence of calcium and magnesium on the secondary structure in solutions of individual caseins and binary casein mixtures. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Jiang Y, Liu XC, de Zawadzki A, Skibsted LH. Binding of calcium to l-serine and o-phospho-l-serine as affected by temperature, pH and ionic strength under milk processing conditions. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Bauland J, Famelart M, Bouhallab S, Jeantet R, Roustel S, Faiveley M, Croguennec T. Addition of calcium and magnesium chlorides as simple means of varying bound and precipitated minerals in casein micelle: Effect on enzymatic coagulation. J Dairy Sci 2020; 103:9923-9935. [DOI: 10.3168/jds.2020-18749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022]
|
31
|
Wang Q, Holt C, Nylander T, Ma Y. Salt partition, ion equilibria, and the structure, composition, and solubility of micellar calcium phosphate in bovine milk with added calcium salts. J Dairy Sci 2020; 103:9893-9905. [DOI: 10.3168/jds.2020-18829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
|
32
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
33
|
Sequence characteristics responsible for protein‐protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heat‐shock proteins. Biopolymers 2019; 110:e23319. [DOI: 10.1002/bip.23319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
|
34
|
Hudson EA, de Paula HMC, da Silva RM, Pires ACDS, da Silva LHM. Curcumin-micellar casein multisite interactions elucidated by surface plasmon resonance. Int J Biol Macromol 2019; 133:860-866. [DOI: 10.1016/j.ijbiomac.2019.04.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
|
35
|
Carver JA, Holt C. Functional and dysfunctional folding, association and aggregation of caseins. PROTEIN MISFOLDING 2019; 118:163-216. [DOI: 10.1016/bs.apcsb.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|