1
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
2
|
López C, Suárez CF, Cadavid LF, Patarroyo ME, Patarroyo MA. Characterising a microsatellite for DRB typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS One 2014; 9:e96973. [PMID: 24820773 PMCID: PMC4018467 DOI: 10.1371/journal.pone.0096973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Non-human primates belonging to the Aotus genus have been shown to be excellent experimental models for evaluating drugs and vaccine candidates against malaria and other human diseases. The immune system of this animal model must be characterised to assess whether the results obtained here can be extrapolated to humans. Class I and II major histocompatibility complex (MHC) proteins are amongst the most important molecules involved in response to pathogens; in spite of this, the techniques available for genotyping these molecules are usually expensive and/or time-consuming. Previous studies have reported MHC-DRB class II gene typing by microsatellite in Old World primates and humans, showing that such technique provides a fast, reliable and effective alternative to the commonly used ones. Based on this information, a microsatellite present in MHC-DRB intron 2 and its evolutionary patterns were identified in two Aotus species (A. vociferans and A. nancymaae), as well as its potential for genotyping class II MHC-DRB in these primates.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- MSc Microbiology Programme, Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Carlos F. Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
| | - Luis F. Cadavid
- Genetics Institute, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel E. Patarroyo
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- * E-mail:
| |
Collapse
|
3
|
Affiliation(s)
- W. BABIK
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30‐387 Kraków, Poland
| |
Collapse
|
4
|
Katoh H, Takabayashi S, Itoh T. Development of microsatellite DNA markers and their chromosome assignment in the common marmoset. Am J Primatol 2010; 71:912-8. [PMID: 19637280 DOI: 10.1002/ajp.20729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study was performed to develop microsatellite DNA markers, which are useful for linkage analyses, gene mapping and blood chimera analyses in the common marmoset (Callithrix jacchus). We searched 153 of 295 bacterial artificial clone DNA sequences of the common marmoset that were archived in the NCBI database in 2004. On the basis of the search, we designed 186 PCR primer sets. When tested using 5 unrelated individuals, we successfully detected 154 markers with PCR products, of which 80 (52%) were polymorphic and 74 (48%) were monomorphic. We assigned each of the 154 markers to a human chromosome based on BLAST searches, which was achieved by searching the entire human genome sequences using an approximately 3 kb section of each forward primer sequence, including approximately 1.5 kb of the upstream and approximately 1.5 kb of the downstream sequences. Combining our assignment data and the chromosome painting-assisted karyotype of the common marmoset [Sherlock et al., Genomics 33:214-219, 1996], we prepared a list of 154 microsatellite DNA markers that were assigned to human chromosomes, except for the Y chromosome, which is equivalent to a chromosome map. Using five microsatellite DNA markers, we have established a fragment analysis method with a sequencer, which can be routinely used for blood chimera analysis, parentage diagnosis and individual identification.
Collapse
Affiliation(s)
- Hideki Katoh
- Institute for Experimental Animals, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
5
|
Otting N, de Vos-Rouweler AJM, Heijmans CMC, de Groot NG, Doxiadis GGM, Bontrop RE. MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 2007; 59:367-75. [PMID: 17334754 PMCID: PMC1914291 DOI: 10.1007/s00251-007-0201-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/01/2007] [Indexed: 12/04/2022]
Abstract
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
Knapp LA, Robson J, Waterhouse JS. Olfactory signals and the MHC: a review and a case study in Lemur catta. Am J Primatol 2006; 68:568-84. [PMID: 16715507 DOI: 10.1002/ajp.20253] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates.
Collapse
Affiliation(s)
- Leslie A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
7
|
Prasad S, Humphreys I, Kireta S, Gilchrist RB, Bardy P, Russ GR, Coates PTH. MHC Class II DRB genotyping is highly predictive of in-vitro alloreactivity in the common marmoset. J Immunol Methods 2006; 314:153-63. [PMID: 16860822 DOI: 10.1016/j.jim.2006.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/12/2006] [Accepted: 06/15/2006] [Indexed: 11/24/2022]
Abstract
The common marmoset (Callithrix jacchus) is emerging as a promising alternative pre-clinical model for transplantation and immunological research. It is therefore important to establish a rapid and reliable method of confirming alloreactivity between donor-recipient pairs. In this study of a large marmoset colony (n=49), we firstly characterised MHC Class II genes (Caja-DRB*W1201, Caja-DRB1*03, Caja-DRB*W16) using, for the first time in this species, sequence-based allelic typing techniques. Exon 2 was amplified using M13-tailed PCR primers specific for known marmoset alleles, and sequenced using universal M13 sequencing primers and dye terminator cycle sequencing. Twenty-six genotypes involving monomorphic Caja-DRB*W1201, 8 Caja-DRB*W16 and 5 Caja-DRB1*03 alleles were observed. Two new DRB*W16 alleles were identified. Subsequently we investigated whether matching at MHC-DRB loci alone could accurately predict in-vitro alloreactivity as assessed by mixed lymphocyte reactions. Peripheral blood mononuclear cells (PBMC) isolated from fully and partially DRB-matched and fully mismatched animal pairs were mixed and co-cultured for T-cell proliferation. PBMC co-cultured from fully or partially mismatched pairs exhibited significant T cell proliferation above single cell controls (p<0.01). Mixed PBMC from fully DRB-matched pairs exhibited no proliferation over controls (p=0.3). Thus using Caja-DRB genotyping, suitably alloreactive donor-recipient pairs can be rapidly and accurately identified for use in further studies of cellular and solid organ transplantation.
Collapse
Affiliation(s)
- Shilpanjali Prasad
- Transplantation Immunology Laboratory and Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital Campus, 28 Woodville Road, Woodville, SA 5011, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Suárez CF, Patarroyo ME, Trujillo E, Estupiñán M, Baquero JE, Parra C, Rodriguez R. Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics 2006; 58:542-58. [PMID: 16791623 DOI: 10.1007/s00251-006-0127-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
One hundred and ten novel MHC-DRB gene exon 2 nucleotide sequences were sequenced in 96 monkeys from three owl monkey species (67 from Aotus nancymaae, 30 from Aotus nigriceps and 13 from Aotus vociferans). Owl monkeys, like humans, have high MHC-DRB allele polymorphism, revealing a striking similarity with several human allele lineages in the peptide binding region and presenting major convergence with DRB lineages from several Catarrhini (humans, apes and Old World monkeys) rather than with others New World monkeys (Platyrrhini). The parallelism between human and Aotus MHC-DRB reveals additional similarities regarding variability pattern, selection pressure and physicochemical constraints in amino acid replacements. These observations concerning previous findings of similarity between the Aotus immune system molecules and their human counterparts affirm this specie's usefulness as an excellent animal model in biomedical research.
Collapse
Affiliation(s)
- Carlos F Suárez
- Fundación Instituto de Inmunmología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
9
|
Baquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suarez C, Patarroyo ME, Parra-López C. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics 2006; 58:590-7. [PMID: 16733718 DOI: 10.1007/s00251-006-0101-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 01/16/2006] [Indexed: 11/25/2022]
Abstract
The Aotus monkey has been of great value in the pre-clinical study of malaria vaccine candidates. Several components of this primate's immune system have been studied and they display great similarity to their human counterparts. Cloning and sequencing studies have revealed extensive sequence polymorphisms in Aotus MHC-DRB with very high similarities to several human allelic lineages, grouping at least nine distinct MHC-DRB lineages. As the efficacy of peptide vaccines in this animal model may be strongly influenced by exon 2 MHC-DRB polymorphism, the availability of a reliable and rapid MHC-DRB typing method for three species of Aotus (Aotus nancymaae, Aotus vociferans and Aotus nigriceps) is necessary. Reference strand conformational analysis (RSCA) was used here for differentiating the distinctive Aotus MHC-DRB sequences' mobility using five fluorescently labelled references proved to be very useful for resolving closely related sequences, establishing the number of sequences transcribed in a particular monkey and their identity. The RSCA method's reliability in terms of identifying Aotus MHC-DRB sequences will facilitate evaluating individual responsiveness to vaccines and prompt studies associating susceptibility/resistance to infectious agents or auto-immune disease, for which Aotus monkeys may be considered to be an appropriate animal model.
Collapse
Affiliation(s)
- Juan E Baquero
- Fundación Instituto de Inmunologia de Colombia, Carrera 50 Número 26-00, Bogotá, Colombia, South America
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bontrop RE. Comparative genetics of MHC polymorphisms in different primate species: duplications and deletions. Hum Immunol 2006; 67:388-97. [PMID: 16728259 DOI: 10.1016/j.humimm.2006.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Indexed: 11/25/2022]
Abstract
Gene products of the major histocompatibility complex (MHC) play a crucial role in the activation of adaptive (antigen-dependent) immune responses. In this paper similarities and dissimilarities among the MHCs of different primate species and their functional implications are reviewed. The human HLA system represents the most thoroughly investigated MHC of any contemporary living primate species, and so it will serve as a reference.
Collapse
Affiliation(s)
- Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, GH Rijswijk, The Netherlands.
| |
Collapse
|
11
|
Doxiadis GGM, van der Wiel MKH, Brok HPM, de Groot NG, Otting N, ’t Hart BA, van Rood JJ, Bontrop RE. Reactivation by exon shuffling of a conserved HLA-DR3-like pseudogene segment in a New World primate species. Proc Natl Acad Sci U S A 2006; 103:5864-8. [PMID: 16581907 PMCID: PMC1421335 DOI: 10.1073/pnas.0600643103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The common marmoset (Callithrix jacchus), a New World monkey species with a limited MHC class II repertoire, is highly susceptible to certain bacterial infections. Genomic analysis of exon 2 sequences documented the existence of only one DRB region configuration harboring three loci. Two of these loci display moderate levels of allelic polymorphism, whereas the -DRB*W12 gene appears to be monomorphic. This study shows that only the Caja-DRB*W16 and -DRB*W12 loci produce functional transcripts. The Caja-DRB1*03 locus is occupied by a pseudogene, given that most of the transcripts, if detected at all, show imperfections and are present at low levels. Moreover, two hybrid transcripts were identified that feature the evolutionarily conserved peptide-binding motif characteristic for the Caja-DRB1*03 gene. Thus, the severely reduced MHC class II repertoire in common marmosets has been expanded by reactivation of a pseudogene segment as a result of exon shuffling.
Collapse
Affiliation(s)
- Gaby G. M. Doxiadis
- Departments of Comparative Genetics and Refinement
- To whom correspondence may be addressed at:
Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ, Rijswijk, The Netherlands. E-mail:
| | | | | | | | - Nel Otting
- Departments of Comparative Genetics and Refinement
| | - Bert A. ’t Hart
- Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| | - Jon J. van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- To whom correspondence may be addressed. E-mail:
| | | |
Collapse
|
12
|
Blancher A, Tisseyre P, Dutaur M, Apoil PA, Maurer C, Quesniaux V, Raulf F, Bigaud M, Abbal M. Study of Cynomolgus monkey (Macaca fascicularis) MhcDRB (Mafa-DRB) polymorphism in two populations. Immunogenetics 2006; 58:269-82. [PMID: 16572321 DOI: 10.1007/s00251-006-0102-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 02/06/2006] [Indexed: 12/25/2022]
Abstract
Cynomolgus monkey is one of the macaque species currently used as an animal model for experimental surgery and medicine, in particular, to experiment new drugs or therapy protocols designed for the prevention of allograft rejection. In this field, it is of utmost importance to select histoincompatible recipient-donor pairs. One way to ensure incompatibility between donor and recipient is to check their major histocompatibility complex (MHC) genotypes at the loci playing a determinant role in histocompatibility. We report in this paper on the cynomolgus monkey DRB polymorphism evidenced by sequencing of amplified exon 2 separated either by denaturing gradient gel electrophoresis (DGGE), or by cloning. By the study of 253 unrelated animals from two populations (Mauritius and The Philippines), we characterized 50 exon 2 sequences among which 28 were identical to sequences already reported in Macaca fascicularis or other macaque species (Macaca mulatta, Macaca nemestrina). By cloning and sequencing DRB cDNA, we revealed two additional DRB alleles. Out of the 20 haplotypes that we defined here, only two were found in both populations. The functional impact of DR incompatibility was studied in vitro by mixed lymphocyte culture.
Collapse
Affiliation(s)
- Antoine Blancher
- Laboratoire d'Immunogenetique moleculaire, Universite Paul Sabatier, Faculte de Medecine de Rangueil, Batiment A2, 133, Route de Narbonne, 31062, Toulouse cedex 4, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Knapp LA. Denaturing gradient gel electrophoresis and its use in the detection of major histocompatibility complex polymorphism. ACTA ACUST UNITED AC 2005; 65:211-9. [PMID: 15730514 DOI: 10.1111/j.1399-0039.2005.00368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) has been studied extensively in humans and in mice and many methods are available for MHC typing of these well-characterized species. Studies of MHC variation in other species are ever increasing and researchers can choose one of a number of approaches for MHC typing of their species of interest. DNA sequencing is regarded as the 'gold standard' and it is frequently used for MHC typing. However, DNA sequencing is impractical when many individuals must be typed. Denaturing gradient gel electrophoresis (DGGE) offers a flexible and sensitive method for identifying and characterizing MHC alleles in any vertebrate species. This article reviews the theory and the practice of DGGE and examines the use of DGGE for MHC identification in various species. DGGE is compared to other similar techniques for MHC typing, such as single-stranded conformational polymorphism and reference strand-mediated conformational analysis. The advantages, problems, pitfalls and limitations of DGGE are considered and future perspectives on the use of DGGE for MHC typing are discussed.
Collapse
Affiliation(s)
- L A Knapp
- Primate Immunogenetics and Molecular Ecology Research Group, Department of Biological Anthropology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
MIDDLETON SIMONA, ANZENBERGER GUSTL, KNAPP LESLIEA. Denaturing gradient gel electrophoresis (DGGE) screening of clones prior to sequencing. ACTA ACUST UNITED AC 2004. [DOI: 10.1111/j.1471-8286.2004.00799.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|