1
|
Wang Q, Mou W, Luo T, Baokaixi G, Luo Y, Xiaokaiti M, Saimaiti X, Wang X, Hao J, Gui Y, Wang X, Wu H, Wang X. Genetic diversity of Rhombomys opimus and Meriones meridianus with potential divergence of plague resistance in the Junggar Basin plague focus based on RT1-Db1*exon1. Heliyon 2024; 10:e33005. [PMID: 39021931 PMCID: PMC11252932 DOI: 10.1016/j.heliyon.2024.e33005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
In the Junggar Basin plague focus, Rhombomys opimus and Meriones meridianus live together, and their parasitic fleas have a similar community structure. However, R. opimus has significantly higher positive rates of Yersinia pestis and anti-F1 antibody compared with M. meridianus. In this study, Y. pestis- and antiF1 antibody-negative R. opimus and M. penicilliger were collected in Qitai county, Fukang city and Mulei county of the eastern part of the Junggar Basin. The genomic DNA was extracted from their spleen tissues, and RT1-Db1*exon1 was amplified through PCR procedure and then sequenced. Sequence analysis was performed and molecular diversity parameters were calculated and compared. The results showed that there were significant differences in nucleotide composition, amino acid composition, number and distribution of single nucleotide polymorphism (SNP) sites and number of haplotypes between R. opimus and M. penicilliger. The nucleotide diversity (π) for R. opimus was 0.00420 ± 0.00139, the haplotype diversity (h) was 0.833 ± 0.086, and the average number of nucleotide differences (K) was 2.02564. The π for M. penicilliger was 0.06569 ± 0.02524, and the h was 1.000 ± 0.045, and the K was 10.4444. The fixation index (FST) value between R. opimus and M. penicilliger was 0.9207. Furthermore, the FST value within R. opimus (0.0275) was significantly lower than that within M. penicilliger (0.2106), indicating a greater genetic variation of M. penicilliger compared with R. opimus. In conclusion, the genetic diversity analysis based on RT1-Db1*exon1 showed that M. penicilliger had higher gene polymorphism and greater genetic differentiation compared with R. opimus in the Junggar Basin plague focus, which might be associated with the low infection rate of Y. pestis.
Collapse
Affiliation(s)
- Qiguo Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Wenting Mou
- Microbiological Laboratory, Urumqi Center for Disease Control and Prevention, Urumqi, 830000, China
| | - Tao Luo
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
- Department of Sterilization and Infection Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
| | - Guliayi Baokaixi
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Yongjun Luo
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Maidina Xiaokaiti
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Xiaowukaiti Saimaiti
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Xinhui Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Junhui Hao
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
| | - Youjun Gui
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
| | - Xiaojun Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
| | - Haiyan Wu
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| | - Xijiang Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, 830000, China
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830000, China
| |
Collapse
|
2
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S, Liao Z, Yu S, Liu J, Sun Y, Wu Q, Dong C, Wang Q. Transcriptome profile analysis in spinal cord injury rats with transplantation of menstrual blood-derived stem cells. Front Mol Neurosci 2024; 17:1335404. [PMID: 38361743 PMCID: PMC10867146 DOI: 10.3389/fnmol.2024.1335404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.
Collapse
Affiliation(s)
- Longju Qi
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenwei Jiang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Wenhua He
- Department of Basic Medicine, Luohe Medical College, Luohe, Henan, China
| | - Xiangzhe Li
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shiyuan Chen
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zehua Liao
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shumin Yu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinyi Liu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuyu Sun
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinfeng Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chuanming Dong
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Wang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Larsson M, Rudqvist N, Spetz J, Shubbar E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS One 2021; 15:e0244098. [PMID: 33382739 PMCID: PMC7774980 DOI: 10.1371/journal.pone.0244098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Radioiodide (131I) is commonly used to treat thyroid cancer and hyperthyroidis.131I released during nuclear accidents, have resulted in increased incidence of thyroid cancer in children. Therefore, a better understanding of underlying cellular mechanisms behind 131I exposure is of great clinical and radiation protection interest. The aim of this work was to study the long-term dose-related effects of 131I exposure in thyroid tissue and plasma in young rats and identify potential biomarkers. Materials and methods Male Sprague Dawley rats (5-week-old) were i.v. injected with 0.5, 5.0, 50 or 500 kBq 131I (Dthyroid ca 1–1000 mGy), and killed after nine months at which time the thyroid and blood samples were collected. Gene expression microarray analysis (thyroid samples) and LC-MS/MS analysis (thyroid and plasma samples) were performed to assess differential gene and protein expression profiles in treated and corresponding untreated control samples. Bioinformatics analyses were performed using the DAVID functional annotation tool and Ingenuity Pathway Analysis (IPA). The gene expression microarray data and LC-MS/MS data were validated using qRT-PCR and ELISA, respectively. Results Nine 131I exposure-related candidate biomarkers (transcripts: Afp and RT1-Bb, and proteins: ARF3, DLD, IKBKB, NONO, RAB6A, RPN2, and SLC25A5) were identified in thyroid tissue. Two dose-related protein candidate biomarkers were identified in thyroid (APRT and LDHA) and two in plasma (DSG4 and TGM3). Candidate biomarkers for thyroid function included the ACADL and SORBS2 (all activities), TPO and TG proteins (low activities). 131I exposure was shown to have a profound effect on metabolism, immune system, apoptosis and cell death. Furthermore, several signalling pathways essential for normal cellular function (actin cytoskeleton signalling, HGF signalling, NRF2-mediated oxidative stress, integrin signalling, calcium signalling) were also significantly regulated. Conclusion Exposure-related and dose-related effects on gene and protein expression generated few expression patterns useful as biomarkers for thyroid function and cancer.
Collapse
Affiliation(s)
- Malin Larsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Nomenclature report on the major histocompatibility complex genes and alleles of the laboratory rat (Rattus norvegicus). Immunogenetics 2019; 72:5-8. [PMID: 31522238 DOI: 10.1007/s00251-019-01131-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The laboratory rat (Rattus norvegicus) has a long tradition as experimental animal in transplantation and autoimmunity research and, hence, there has been an inherent interest in its major histocompatibility complex (MHC), the RT1 complex. Available inbred rat strains and their derived RT1-congenic and intra-RT1 recombinant congenic strains were crucial for definition and characterization of RT1 genes and alleles and essentially advanced elucidation of the RT1 genomic organization in the past. The Immuno Polymorphism Database (IPD) harbors a section for rat MHC genes and alleles (IPD-MHC RT1) since 2005. The curator for IPD-MHC RT1 provides official designations for newly described genes and alleles of RT1. This is the first nomenclature report of RT1 genes and alleles that are currently included in IPD-MHC RT1.
Collapse
|
5
|
Picarda E, Bézie S, Venturi V, Echasserieau K, Mérieau E, Delhumeau A, Renaudin K, Brouard S, Bernardeau K, Anegon I, Guillonneau C. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection. J Clin Invest 2014; 124:2497-512. [PMID: 24789907 DOI: 10.1172/jci71533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In a rat heart allograft model, preventing T cell costimulation with CD40Ig leads to indefinite allograft survival, which is mediated by the induction of CD8+CD45RClo regulatory T cells (CD8+CD40Ig Tregs) interacting with plasmacytoid dendritic cells (pDCs). The role of TCR-MHC-peptide interaction in regulating Treg activity remains a topic of debate. Here, we identified a donor MHC class II-derived peptide (Du51) that is recognized by TCR-biased CD8+CD40Ig Tregs and activating CD8+CD40Ig Tregs in both its phenotype and suppression of antidonor alloreactive T cell responses. We generated a labeled tetramer (MHC-I RT1.Aa/Du51) to localize and quantify Du51-specific T cells within rat cardiac allografts and spleen. RT1.Aa/Du51-specific CD8+CD40Ig Tregs were the most suppressive subset of the total Treg population, were essential for in vivo tolerance induction, and expressed a biased, restricted Vβ11-TCR repertoire in the spleen and the graft. Finally, we demonstrated that treatment of transplant recipients with the Du51 peptide resulted in indefinite prolongation of allograft survival. These results show that CD8+CD40Ig Tregs recognize a dominant donor antigen, resulting in TCR repertoire alterations in the graft and periphery. Furthermore, this allopeptide has strong therapeutic activity and highlights the importance of TCR-peptide-MHC interaction for Treg generation and function.
Collapse
|
6
|
Yokoi N, Hidaka S, Tanabe S, Ohya M, Ishima M, Takagi Y, Masui N, Seino S. Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats. Genes Immun 2011; 13:139-45. [PMID: 21918539 PMCID: PMC3308136 DOI: 10.1038/gene.2011.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the MHC class II 'u' haplotype is strongly associated with type 1 diabetes (T1D) in rats, the role of MHC class II in the development of tissue-specific autoimmune diseases including T1D and autoimmune thyroiditis remains unclear. To clarify this, we produced a congenic strain carrying MHC class II 'a' and 'u' haplotypes on the Komeda diabetes-prone (KDP) genetic background. The u/u homozygous animals developed T1D similar to the original KDP rat; a/u heterozygous animals did develop T1D but with delayed onset and low frequency. In contrast, none of the a/a homozygous animals developed T1D; about half of the animals with a/u heterozygous or a/a homozygous genotypes showed autoimmune thyroiditis. To investigate the role of genetic background in the development of thyroiditis, we also produced a congenic strain carrying Cblb mutation of the KDP rat on the PVG.R23 genetic background (MHC class II 'a' haplotype). The congenic rats with homozygous Cblb mutation showed autoimmune thyroiditis without T1D and slight to severe alopecia, a clinical symptom of hypothyroidism such as Hashimoto's thyroiditis. These data indicate that MHC class II is involved in the tissue-specific development of autoimmune diseases, including T1D and thyroiditis.
Collapse
Affiliation(s)
- N Yokoi
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Xue B, Sukumaran S, Nie J, Jusko WJ, DuBois DC, Almon RR. Adipose tissue deficiency and chronic inflammation in diabetic Goto-Kakizaki rats. PLoS One 2011; 6:e17386. [PMID: 21364767 PMCID: PMC3045458 DOI: 10.1371/journal.pone.0017386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals.
Collapse
Affiliation(s)
- Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Strandberg LS, Ambrosi A, Jagodic M, Dzikaite V, Janson P, Khademi M, Salomonsson S, Ottosson L, Klauninger R, Adén U, Sonesson SE, Sunnerhagen M, de Graaf KL, Kuchroo VK, Achour A, Winqvist O, Olsson T, Wahren-Herlenius M. Maternal MHC regulates generation of pathogenic antibodies and fetal MHC-encoded genes determine susceptibility in congenital heart block. THE JOURNAL OF IMMUNOLOGY 2010; 185:3574-82. [PMID: 20696861 DOI: 10.4049/jimmunol.1001396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Congenital heart block develops in fetuses of anti-Ro52 Ab-positive women. A recurrence rate of 20%, despite the persistence of maternal autoantibodies, indicates that there are additional, yet unidentified, factors critical for development of congenital heart block. In this study, we demonstrate that besides the maternal MHC controlling Ab specificity, fetal MHC-encoded genes influence fetal susceptibility to congenital heart block. Using MHC congenic rat strains, we show that heart block develops in rat pups of three strains carrying MHC haplotype RT1(av1) (DA, PVG.AV1, and LEW.AV1) after maternal Ro52 immunization, but not in LEW rats (RT1(l)). Different anti-Ro52 Ab fine specificities were generated in RT1(av1) versus RT1(l) animals. Maternal and fetal influence was determined in an F(2) cross between LEW.AV1 and LEW strains, which revealed higher susceptibility in RT1(l) than RT1(av1) pups once pathogenic Ro52 Abs were present. This was further confirmed in that RT1(l) pups more frequently developed heart block than RT1(av1) pups after passive transfer of RT1(av1) anti-Ro52 sera. Our findings show that generation of pathogenic Ro52 Abs is restricted by maternal MHC, whereas the fetal MHC locus regulates susceptibility and determines the fetal disease outcome in anti-Ro52-positive pregnancies.
Collapse
Affiliation(s)
- Linn S Strandberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang DB, Dayton RD, Zweig RM, Klein RL. Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response. Exp Neurol 2010; 224:197-206. [PMID: 20346943 DOI: 10.1016/j.expneurol.2010.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 03/17/2010] [Indexed: 12/31/2022]
Abstract
Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of 2 weeks. Specific decreases in messages for dopamine-related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression.
Collapse
Affiliation(s)
- David B Wang
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
10
|
de Bellocq JG, Leirs H. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents. TISSUE ANTIGENS 2009; 74:233-237. [PMID: 19691639 DOI: 10.1111/j.1399-0039.2009.01305.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.
Collapse
Affiliation(s)
- J Goüy de Bellocq
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium.
| | | |
Collapse
|
11
|
Itoh T, Horiuchi M, Itoh A. Interferon-triggered transcriptional cascades in the oligodendroglial lineage: a comparison of induction of MHC class II antigen between oligodendroglial progenitor cells and mature oligodendrocytes. J Neuroimmunol 2009; 212:53-64. [PMID: 19467717 DOI: 10.1016/j.jneuroim.2009.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/09/2009] [Accepted: 04/30/2009] [Indexed: 01/09/2023]
Abstract
Interferon-gamma induces major histocompatibility complex class II (MHC-II) in proliferating oligodendroglial progenitor cells (OPC), but to a much lesser extent in mature oligodendrocytes. Interferon-beta has virtually no effects on MHC-II induction even in OPC. Interferon-gamma-mediated transcriptional induction of CIITA, a critical regulator of MHC-II induction, was 6-fold lower in mature oligodendrocytes than in OPC, and entirely dependent on promoter IV, suggesting that the transcriptional activity of promoter IV is down-regulated after differentiation. The distinct difference in MHC-II induction between interferon-gamma and interferon-beta is attributed to transient interferon-beta-mediated activation of STAT1-IRF1 signaling compared to the sustained interferon-gamma-mediated activation.
Collapse
Affiliation(s)
- Takayuki Itoh
- Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA 95817-2215, United States.
| | | | | |
Collapse
|
12
|
Fuller JM, Bogdani M, Tupling TD, Jensen RA, Pefley R, Manavi S, Cort L, Blankenhorn EP, Mordes JP, Lernmark A, Kwitek AE. Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene. Physiol Genomics 2009; 38:89-97. [PMID: 19351909 DOI: 10.1152/physiolgenomics.00015.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Congenic DRF.(f/f) rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF.(f/f) rat line, DRF.(f/f) rats were crossed to inbred BBDR or DR.(lyp/lyp) rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR.(lyp/lyp) rats developed T1D by 83 days of age. Reduction of the DRF.(f/f) F344 DNA fragment by 26 Mb (42.52-68.51 Mb) retained complete T1D protection. Further dissection revealed that a 2 Mb interval of F344 DNA (67.41-70.17 Mb) (region 1) resulted in 47% protection and significantly delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Retaining <1 Mb of F344 DNA at the distal end (76.49-76.83 Mb) (region 2) resulted in 28% protection and also delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Comparative analysis of diabetes frequency in the DRF.(f/f) congenic sublines further refined the RNO4 region 1 interval to approximately 670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF.(f/f) sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but <20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR Vbeta 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4.
Collapse
Affiliation(s)
- J M Fuller
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dlaske H, Karaüzüm H, Monzon-Casanova E, Rudolf R, Starick L, Müller I, Wildner G, Diedrichs-Möhring M, Koch N, Miyoshi-Akiyama T, Uchiyama T, Wonigeit K, Fleischer B, Overbeck S, Rink L, Herrmann T. Superantigen-presentation by rat major histocompatibility complex class II molecules RT1.Bl and RT1.Dl. Immunology 2008; 128:e572-81. [PMID: 19740318 DOI: 10.1111/j.1365-2567.2008.03033.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rat major histocompatibility complex (MHC) class II molecules RT1.B(l) (DQ-like) and RT1.D(l) (DR-like) were cloned from the LEW strain using reverse transcription-polymerase chain reaction and expressed in mouse L929 cells. The transduced lines bound MHC class II-specific monoclonal antibodies in an MHC-isotype-specific manner and presented peptide antigens and superantigens to T-cell hybridomas. The T-cell-hybridomas responded well to all superantigens presented by human MHC class II, whereas the response varied considerably with rat MHC class II-transduced lines as presenters. The T-cell hybridomas responded to the pyrogenic superantigens Staphylococcus enterotoxin B (SEB), SEC1, SEC2 and SEC3 only at high concentrations with RT1.B(l)-transduced and RT1.D(l)-transduced cells as presenters. The same was true for streptococcal pyrogenic exotoxin A (SPEA), but this was presented only by RT1.B(l) and not by RT1.D(l). SPEC was recognized only if presented by human MHC class II. Presentation of Yersinia pseudotuberculosis superantigen (YPM) showed no MHC isotype preference, while Mycoplasma arthritidis superantigen (MAS or MAM) was presented by RT1.D(l) but not by RT1.B(l). Interestingly, and in contrast to RT1.B(l), the RT1.D(l) completely failed to present SEA and toxic shock syndrome toxin 1 even after transduction of invariant chain (CD74) or expression in other cell types such as the surface MHC class II-negative mouse B-cell lymphoma (M12.4.1.C3). We discuss the idea that a lack of SEA presentation may not be a general feature of RT1.D molecules but could be a consequence of RT1.D(l)beta-chain allele-specific substitutions (arginine 80 to lysine, asparagine 82 to aspartic acid) in the extremely conserved region flanking the Zn(2+)-binding histidine 81, which is crucial for high-affinity SEA-binding.
Collapse
Affiliation(s)
- Henry Dlaske
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Pedersen MV, Helweg-Larsen RB, Nielsen FC, Berezin V, Bock E, Penkowa M. The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury. Neurosci Lett 2008; 437:148-53. [PMID: 18436381 DOI: 10.1016/j.neulet.2008.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Cerebral responses to traumatic brain injury (TBI) include up- and downregulation of a vast number of proteins involved in endogenous inflammatory responses and defense mechanisms developing postinjury. The present study analyzed the global gene expression profile in response to cryo-induced TBI by means of microarray analysis. Adolescent rats were subjected to TBI and treated with either placebo or a neural cell adhesion molecule (NCAM)-derived fibroblast growth factor receptor (FGFR) agonist, FGL peptide, which has been demonstrated to have neuroprotective effects. mRNA levels were measured at various time-points postlesion (6 h, 1 day and 4 days). The effects of injury, treatment, and injury-treatment interaction were observed. TBI alone rendered a large number of genes affected. Analysis of lesion and treatment interactions resulted in a clear effect of the interaction between injury and FGL-treatment compared to injury and placebo-treatment. Genes affected by TBI alone included inflammation markers, protein kinases, ion channel members and growth factors. Genes encoding regulators of apoptosis, signal transduction and metabolism were altered by the interaction between FGL-treatment and TBI. FGL-treatment in non-injured animals rendered genes regulating signaling, transport and cytoskeleton maintenance significantly increased. Thus, the hypothesis of a putative neuroprotective role of FGL was supported by our findings.
Collapse
Affiliation(s)
- Martin Volmer Pedersen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
16
|
Bondinas GP, Moustakas AK, Papadopoulos GK. The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 2007; 59:539-53. [PMID: 17497145 DOI: 10.1007/s00251-007-0224-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
The list of alleles in the HLA-DRB, HLA-DQA, and HLA-DQB gene loci has grown enormously since the last listing in this journal 8 years ago. Crystal structure determination of several human and mouse HLA class II alleles, representative of two gene loci in each species, enables a direct comparison of ortholog and paralog loci. A new numbering system is suggested, extending earlier suggestions by [Fremont et al. in Immunity 8:305-317, (1998)], which will bring in line all the structural features of various gene loci, regardless of animal species. This system allows for structural equivalence of residues from different gene loci. The listing also highlights all amino acid residues participating in the various functions of these molecules, from antigenic peptide binding to homodimer formation, CD4 binding, membrane anchoring, and cytoplasmic signal transduction, indicative of the variety of functions of these molecules. It is remarkable that despite the enormous number of unique alleles listed thus far (DQA = 22, DQB = 54, DRA = 2, and DRB = 409), there is invariance at many specific positions in man, but slightly less so in mouse or rat, despite their much lower number of alleles at each gene locus in the latter two species. Certain key polymorphisms (from substitutions to an eight-residue insertion in the cytoplasmic tail of certain DQB alleles) that have thus far gone unnoticed are highly suggestive of differences or diversities in function and thus call for further investigation into the properties of these specific alleles. This listing is amenable to supplementation by future additions of new alleles and the highlighting of new functions to be discovered, providing thus a unifying platform of reference in all animal species for the MHC class II allelic counterparts, aiding research in the field and furthering our understanding of the functions of these molecules.
Collapse
Affiliation(s)
- George P Bondinas
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Epirus Institute of Technology, GR47100 Arta, Greece
| | | | | |
Collapse
|