1
|
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, Bakhtiari M, Chimenti ML, Baxter TA, Raikar SS, Wang X, Frye SV, Henry CJ, Earp HS, Bhasin M, DeRyckere D, Graham DK. MERTK inhibition selectively activates a DC - T-cell axis to provide anti-leukemia immunity. Leukemia 2024; 38:2685-2698. [PMID: 39322710 DOI: 10.1038/s41375-024-02408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
TAM-family tyrosine kinases (TYRO3, AXL and MERTK) are potential cancer therapeutic targets. In previous studies MERTK inhibition in the immune microenvironment was therapeutically effective in a B-cell acute leukemia (B-ALL) model. Here, we probed anti-leukemia immune mechanisms and evaluated roles for TYRO3 and AXL in the leukemia microenvironment. Host Mertk knock-out or MERTK inhibitor MRX-2843 increased CD8α+ dendritic cells (DCs) with enhanced antigen-presentation capacity in the leukemia microenvironment and inhibited leukemogenesis. High MERTK or low DC gene expression were associated with poor prognosis in pediatric ALL patients, indicating the clinical relevance of these findings. MRX-2843 increased CD8+ T-cell numbers and prevented induction of exhaustion markers, implicating a DC - T-cell axis. Indeed, combined depletion of CD8α+ DCs and CD8+ T-cells was required to abrogate anti-leukemia immunity in Mertk-/- mice. Tyro3-/- mice were also protected against B-ALL, implicating TYRO3 as an immunotherapeutic target. In contrast to Mertk-/- mice, Tyro3-/- did not increase CD8α+ DCs with enhanced antigen-presentation capacity and therapeutic activity was less dependent on DCs, indicating a different immune mechanism. Axl-/- did not impact leukemogenesis. These data demonstrate differential TAM kinase roles in the leukemia microenvironment and provide rationale for development of MERTK and/or TYRO3-targeted immunotherapies.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Kristen M Jacobsen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Juhye Yim
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Gianna M Branella
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Madison L Chimenti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Travon A Baxter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Curtis J Henry
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - H Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Cancer Immunology Program, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Laubreton D, Djebali S, Angleraux C, Chain B, Dubois M, Henry F, Leverrier Y, Teixeira M, Markossian S, Marvel J. Generation of a C57BL/6J mouse strain expressing the CD45.1 epitope to improve hematopoietic stem cell engraftment and adoptive cell transfer experiments. Lab Anim (NY) 2023; 52:324-331. [PMID: 38017180 DOI: 10.1038/s41684-023-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Adoptive cell transfer between genetically identical hosts relies on the use of a congenic marker to distinguish the donor cells from the host cells. CD45, a glycoprotein expressed by all hematopoietic cells, is one of the main congenic markers used because its two isoforms, CD45.1 and CD45.2, can be discriminated by flow cytometry. As a consequence, C57BL/6J (B6; CD45.2) and B6.SJL-Ptprca Pepcb/BoyJ (B6.SJL; CD45.1) mice are widely used in adoptive cell transfer experiments, under the presumption that they differ only at the CD45 (Ptprc) locus. However, recent studies have identified genetic variations between these congenic strains and have notably highlighted a differential expression of cathepsin E (CTSE). The B6.SJL mouse presents a number of functional differences in hematopoietic stem cell engraftment potential and immune cell numbers compared with the B6 mouse. In this study, we showed that B6 and B6.SJL mice also differ in their CD8+ T cell compartment and CD8+ T cell responses to viral infection. We identified Ctse as the most differentially expressed gene between CD8+ T cells of B6 and B6.SJL and demonstrated that the differences reported between these two mouse strains are not due to CTSE. Finally, using CRISPR-Cas9 genome editing, we generated a CD45.1-expressing B6 mouse by inserting one nucleotide mutation (A904G) leading to an amino acid change (K302E) in the Ptprc gene of the B6 mouse. We showed that this new B6-Ptprcem(K302E)Jmar/J mouse resolves the experimental biases reported between the B6 and B6.SJL mouse lines and should thus represent the new gold standard for adoptive cell transfer experiments in B6.
Collapse
Affiliation(s)
- Daphné Laubreton
- CIRI, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR 5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sophia Djebali
- CIRI, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR 5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Céline Angleraux
- SFR BioSciences, Plateau de Biologie Expérimentale de la Souris (AniRA-PBES), Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UAR3444, INSERM US8, Lyon, France
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Maxence Dubois
- CIRI, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR 5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Farida Henry
- SFR BioSciences, Plateau de Biologie Expérimentale de la Souris (AniRA-PBES), Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UAR3444, INSERM US8, Lyon, France
| | - Yann Leverrier
- CIRI, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR 5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Marie Teixeira
- SFR BioSciences, Plateau de Biologie Expérimentale de la Souris (AniRA-PBES), Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UAR3444, INSERM US8, Lyon, France
| | - Suzy Markossian
- Institut de Génomique Fonctionnelle de Lyon, INRAE USC 1370, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jacqueline Marvel
- CIRI, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR 5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France.
| |
Collapse
|
3
|
Bouabid C, Rabhi S, Thedinga K, Barel G, Tnani H, Rabhi I, Benkahla A, Herwig R, Guizani-Tabbane L. Host M-CSF induced gene expression drives changes in susceptible and resistant mice-derived BMdMs upon Leishmania major infection. Front Immunol 2023; 14:1111072. [PMID: 37187743 PMCID: PMC10175952 DOI: 10.3389/fimmu.2023.1111072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.
Collapse
Affiliation(s)
- Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Kristina Thedinga
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gal Barel
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hedia Tnani
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechnopole Sidi-Thabet- University of Manouba, Sidi-Thabet, Tunisia
| | - Alia Benkahla
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- *Correspondence: Lamia Guizani-Tabbane,
| |
Collapse
|
4
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Hiramatsu S, Watanabe KS, Zeggar S, Asano Y, Miyawaki Y, Yamamura Y, Katsuyama E, Katsuyama T, Watanabe H, Takano-Narazaki M, Matsumoto Y, Kawabata T, Sada KE, Wada J. Regulation of Cathepsin E gene expression by the transcription factor Kaiso in MRL/lpr mice derived CD4+ T cells. Sci Rep 2019; 9:3054. [PMID: 30816218 PMCID: PMC6395770 DOI: 10.1038/s41598-019-38809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
Global DNA hypomethylation in CD4+ cells in systemic lupus erythematosus (SLE) was suggested to play a key role in the pathogenesis. To identify new methylation-sensitive genes, we integrated genome-wide DNA methylation and mRNA profiling data in CD4+ cells of MRL/lpr (MRL) and C57BL6/J (B6) mice. We identified Cathepsin E (Ctse), in which 13 methyl-CpGs within 583 bp region of intron 1 were hypomethylated, and Ctse mRNA upregulated in MRL compared with B6 mice. One of methyl-CpGs, mCGCG was 93.3 ± 2.05% methylated in B6 mice, while 80.0 ± 6.2% methylated and mutated to CGGG in MRL mice. Kaiso is known to bind to mCGCG and we hypothesized that it represses expression of Ctse in B6 mice. The binding of Kaiso to mCGCG site in B6 mice was reduced in MRL mice revealed by ChIP-PCR. EL4 cells treated with 5-azaC and/or Trichostatin A showed the suppression of binding of Kaiso to mCGCG motif by ChIP-PCR and the overexpression of Ctse was demonstrated by qPCR. Ctse gene silencing by siRNA in EL4 cells resulted in reduction of IL-10 secretion. The hypomethylation of mCGCG motif, reduced recruitment of Kaiso, and increased expression of Ctse and Il-10 in CD4+ cells may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Sumie Hiramatsu
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Katsue S Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yuriko Yamamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Mariko Takano-Narazaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Tomoko Kawabata
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
7
|
Necchi V, Sommi P, Vanoli A, Fiocca R, Ricci V, Solcia E. Natural history of Helicobacter pylori VacA toxin in human gastric epithelium in vivo: vacuoles and beyond. Sci Rep 2017; 7:14526. [PMID: 29109534 PMCID: PMC5673961 DOI: 10.1038/s41598-017-15204-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023] Open
Abstract
Uptake, intracellular trafficking and pathologic effects of VacA toxin from Helicobacter pylori have been widely investigated in vitro. However, no systematic analysis investigated VacA intracellular distribution and fate in H. pylori-infected human gastric epithelium in vivo, using ultrastructural immunocytochemistry that combines precise toxin localization with analysis of the overall cell ultrastructure and intercompartimental/interorganellar relationships. By immunogold procedure, in this study we investigated gastric biopsies taken from dyspeptic patients to characterize the overall toxin’s journey inside human gastric epithelial cells in vivo. Endocytic pits were found to take up VacA at sites of bacterial adhesion, leading to a population of peripheral endosomes, which in deeper (juxtanuclear) cytoplasm enlarged and fused each other to form large VacA-containing vacuoles (VCVs). These directly opened into endoplasmic reticulum (ER) cisternae, which in turn enveloped mitochondria and contacted the Golgi apparatus. In all such organelles we found toxin molecules, often coupled with structural damage. These findings suggest direct toxin transfer from VCVs to other target organelles such as ER/Golgi and mitochondria. VacA-induced cytotoxic changes were associated with the appearance of auto(phago)lysosomes containing VacA, polyubiquitinated proteins, p62/SQSTM1 protein, cathepsin D, damaged mitochondria and bacterial remnants, thus leading to persistent cell accumulation of degradative products.
Collapse
Affiliation(s)
- Vittorio Necchi
- Department of Molecular Medicine, Pathologic Anatomy and Human Physiology Units, University of Pavia, Pavia, Italy.,Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Patrizia Sommi
- Department of Molecular Medicine, Pathologic Anatomy and Human Physiology Units, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, Pathologic Anatomy and Human Physiology Units, University of Pavia, Pavia, Italy
| | - Roberto Fiocca
- Department of Surgical and Diagnostic Sciences, Pathology Unit, University of Genova and IRCCS S. Martino, Genova, Italy
| | - Vittorio Ricci
- Department of Molecular Medicine, Pathologic Anatomy and Human Physiology Units, University of Pavia, Pavia, Italy.
| | - Enrico Solcia
- Department of Molecular Medicine, Pathologic Anatomy and Human Physiology Units, University of Pavia, Pavia, Italy.,Pathologic Anatomy Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
8
|
Abstract
Mice and humans branched from a common ancestor approximately 80 million years ago. Despite this, mice are routinely utilized as animal models of human disease and in drug development because they are inexpensive, easy to handle, and relatively straightforward to genetically manipulate. While this has led to breakthroughs in the understanding of genotype-phenotype relationships and in the identification of therapeutic targets, translation of beneficial responses to therapeutics from mice to humans has not always been successful. In a large part, these differences may be attributed to variations in the alignment of protein expression and signaling in the immune systems between mice and humans. Well-established inbred strains of "The Laboratory Mouse" vary in their immune response patterns as a result of genetic mutations and polymorphisms arising from intentional selection for research relevant traits, and even closely related substrains vary in their immune response patterns as a result of genetic mutations and polymorphisms arising from genetic drift. This article reviews some of the differences between the mouse and human immune system and between inbred mouse strains and shares examples of how these differences can impact the usefulness of mouse models of disease.
Collapse
Affiliation(s)
- Rani S Sellers
- 1 Drug Safety Research and Development, Pfizer Inc., Pearl River, NY, USA
| |
Collapse
|
9
|
Abstract
Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide access for the non-expert.
Collapse
Affiliation(s)
- David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK,*Correspondence: David A. Hume, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK,
| |
Collapse
|
10
|
Raza S, Barnett MW, Barnett-Itzhaki Z, Amit I, Hume DA, Freeman TC. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J Leukoc Biol 2014; 96:167-83. [PMID: 24721704 PMCID: PMC4378362 DOI: 10.1189/jlb.6hi0313-169r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 01/17/2014] [Accepted: 02/23/2014] [Indexed: 01/09/2023] Open
Abstract
Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.
Collapse
Affiliation(s)
- Sobia Raza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | | | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom; and
| |
Collapse
|
11
|
Depke M, Breitbach K, Dinh Hoang Dang K, Brinkmann L, Salazar MG, Dhople VM, Bast A, Steil L, Schmidt F, Steinmetz I, Völker U. Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. J Proteomics 2014; 103:72-86. [PMID: 24704164 DOI: 10.1016/j.jprot.2014.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Macrophages are essential components of the innate immune system and crucial for pathogen elimination in early stages of infection. We previously observed that bone marrow-derived macrophages (BMMs) from C57BL/6 mice exhibited increased killing activity against Burkholderia pseudomallei compared to BMMs from BALB/c mice. This effect was particularly pronounced when cells were treated with IFN-γ. To unravel mechanisms that could explain these distinct bactericidal effects, a comparative combined proteome and transcriptome analysis of untreated and IFN-γ treated BALB/c and C57BL/6 BMMs under standardized serum-free conditions was carried out. We found differences in gene expression/protein abundance belonging to cellular oxidative and antioxidative stress systems. Genes/proteins involved in the generation of oxidant molecules and the function of phagosomes (respiratory chain ATPase, lysosomal enzymes, cathepsins) were predominantly higher expressed/more abundant in C57BL/6 BMMs. Components involved in alleviation of oxidative stress (peroxiredoxin, mitochondrial superoxide dismutase) were more abundant in C57BL/6 BMMs as well. Thus, C57BL/6 BMMs seemed to be better equipped with cellular systems that may be advantageous in combating engulfed pathogens. Simultaneously, C57BL/6 BMMs were well protected from oxidative burst. We assume that these variations co-determine differences in resistance between BALB/c and C57BL/6 mice observed in many infection models. BIOLOGICAL SIGNIFICANCE In this study we performed combined transcriptome and proteome analyses on BMMs derived from two inbred mouse strains that are frequently used for studies in the field of host-pathogen interaction research. Strain differences between BALB/c and C57BL/6 BMMs were found to originate mainly from different protein abundance levels rather than from different gene expression. Differences in abundance of respiratory chain complexes and lysosomal proteins as well as differential regulation of components belonging to various antioxidant stress systems help to explain long-known differences between the mouse strains concerning their different susceptibility in several infection models.
Collapse
Affiliation(s)
- Maren Depke
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Breitbach
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Khoa Dinh Hoang Dang
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lars Brinkmann
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu Mukund Dhople
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Antje Bast
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group "Applied Proteomics", Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ivo Steinmetz
- Friedrich Loeffler Institute for Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Alaish SM, Smith AD, Timmons J, Greenspon J, Eyvazzadeh D, Murphy E, Shea-Donahue T, Cirimotich S, Mongodin E, Zhao A, Fasano A, Nataro JP, Cross AS. Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host. Gut Microbes 2013; 4:292-305. [PMID: 23652772 PMCID: PMC3744514 DOI: 10.4161/gmic.24706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Failure of the intestinal barrier is a characteristic feature of cholestasis. We have previously observed higher mortality in C57BL/6J compared with A/J mice following common bile duct ligation (CBDL). We hypothesized the alteration in gut barrier function following cholestasis would vary by genetic background. Following one week of CBDL, jejunal TEER was significantly reduced in each ligated mouse compared with their sham counterparts; moreover, jejunal TEER was significantly lower in both sham and ligated C57BL/6J compared with sham and ligated A/J mice, respectively. Bacterial translocation to mesenteric lymph nodes was significantly increased in C57BL/6J mice vs. A/J mice. Four of 15 C57BL/6J mice were bacteremic; whereas, none of the 17 A/J mice were. Jejunal IFN-γ mRNA expression was significantly elevated in C57BL/6J compared with A/J mice. Western blot analysis demonstrated a significant decrease in occludin protein expression in C57BL/6J compared with A/J mice following both sham operation and CBDL. Only C57BL/6J mice demonstrated a marked decrease in ZO-1 protein expression following CBDL compared with shams. Pyrosequencing of the 16S rRNA gene in fecal samples showed a dysbiosis only in C57BL/6J mice following CBDL when compared with shams. This study provides evidence of strain differences in gut microbiota, tight junction protein expression, intestinal resistance and bacterial translocation which supports the notion of a genetic predisposition to exaggerated injury following cholestasis.
Collapse
Affiliation(s)
- Samuel M. Alaish
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA,Correspondence to: Samuel M. Alaish,
| | - Alexis D. Smith
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jennifer Timmons
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Jose Greenspon
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Daniel Eyvazzadeh
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Ebony Murphy
- Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA
| | - Terez Shea-Donahue
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Shana Cirimotich
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| | - Aiping Zhao
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| | - Alessio Fasano
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA,Department of Pediatrics; University of Maryland School of Medicine; Baltimore, MD USA
| | - James P. Nataro
- Department of Pediatrics; University of Virginia School of Medicine; Charlottesville, VA USA
| | - Alan S Cross
- Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
13
|
Pilzner C, Bühling F, Reinheckel T, Chwieralski C, Rathinasamy A, Lauenstein HD, Wex T, Welte T, Braun A, Groneberg DA. Allergic airway inflammation in mice deficient for the antigen-processing protease cathepsin E. Int Arch Allergy Immunol 2012; 159:367-83. [PMID: 22846634 DOI: 10.1159/000338288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 03/14/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Allergic asthma is a Th2-type chronic inflammatory disease of the lung. It is characterized by infiltration of eosinophils, neutrophils, mast cells and T lymphocytes into the airways. Th2 cytokines like interleukin (IL)-4, IL-5 and chemokines like eotaxin are increased in the asthmatic response. The processing and presentation of exogenous antigens is important in the sensitization to an allergen. Cathepsin E (Ctse) is an intracellular aspartic endoprotease which is expressed in immune cells like dendritic cells (DCs). It was found to play an essential role in the processing and presentation of ovalbumin (OVA). The aim of the present study was to investigate the inhibition of Ctse in two different experimental models of allergic airway inflammation. METHODS Ctse wild-type (Ctse(+/+)) and Ctse-deficient (Ctse(-/-)) bone marrow-derived DCs (BMDCs) were pulsed with OVA/OVA peptide and cocultured with OVA transgenic T II (OT II) cells whose proliferation was subsequently analyzed. Two different in vivo asthma models with Ctse(+/+) and Ctse(-/-) mice were performed: an acute OVA-induced and a subchronic Phleum pratense-induced airway inflammation. RESULTS Proliferation of OT II cells was decreased when cocultured with BMDCs of Ctse(-/-) mice as compared to cells cocultured with BMDCs of Ctse(+/+) mice. In vivo, Ctse deficiency led to reduced lymphocyte influx after allergen sensitization and challenge in both investigated airway inflammation models, compared to their control groups. CONCLUSION Ctse deficiency leads to a reduced antigen presentation in vitro. This is followed by a distinct effect on lymphocyte influx in states of allergic airway inflammation in vivo.
Collapse
Affiliation(s)
- Carolin Pilzner
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sellers RS, Clifford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 2011; 49:32-43. [PMID: 22135019 DOI: 10.1177/0300985811429314] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inbred laboratory mouse strains are highly divergent in their immune response patterns as a result of genetic mutations and polymorphisms. The generation of genetically engineered mice (GEM) has, in the past, used embryonic stem (ES) cells for gene targeting from various 129 substrains followed by backcrossing into more fecund mouse strains. Although common inbred mice are considered "immune competent," many have variations in their immune system-some of which have been described-that may affect the phenotype. Recognition of these immune variations among commonly used inbred mouse strains is essential for the accurate interpretation of expected phenotypes or those that may arise unexpectedly. In GEM developed to study specific components of the immune system, accurate evaluation of immune responses must take into consideration not only the gene of interest but also how the background strain and microbial milieu contribute to the manifestation of findings in these mice. This article discusses points to consider regarding immunological differences between the common inbred laboratory mouse strains, particularly in their use as background strains in GEM.
Collapse
Affiliation(s)
- R S Sellers
- Albert Einstein College of Medicine, 1301 Morris Park Ave, Room 158, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
15
|
Pillai MR, Collison LW, Wang X, Finkelstein D, Rehg JE, Boyd K, Szymczak-Workman AL, Doggett T, Griffith TS, Ferguson TA, Vignali DAA. The plasticity of regulatory T cell function. THE JOURNAL OF IMMUNOLOGY 2011; 187:4987-97. [PMID: 22013112 DOI: 10.4049/jimmunol.1102173] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (T(regs)) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas T(regs) possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of T(regs) lacking the ability to secrete both IL-10 and IL-35, which individually are required for maximal T(reg) activity. Surprisingly, IL-10/IL-35 double-deficient T(regs) were fully functional in vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (Ctse) expression, enhanced TRAIL (Tnfsf10) expression, and soluble TRAIL release, rendering IL-10/IL-35 double-deficient T(regs) functionally dependent on TRAIL in vitro and in vivo. Lastly, whereas C57BL/6 T(regs) are normally IL-10/IL-35 dependent, BALB/c T(regs), which express high levels of cathepsin E and enhanced TRAIL expression, are partially TRAIL dependent by default. These data reveal that cross-regulatory pathways exist that control the utilization of suppressive mechanisms, thereby providing T(reg) functional plasticity.
Collapse
Affiliation(s)
- Meenu R Pillai
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamamoto K, Kawakubo T, Yasukochi A, Tsukuba T. Emerging roles of cathepsin E in host defense mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:105-12. [PMID: 21664991 DOI: 10.1016/j.bbapap.2011.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 01/07/2023]
Abstract
Cathepsin E is an intracellular aspartic proteinase of the pepsin superfamily, which is predominantly expressed in certain cell types, including the immune system cells and rapidly regenerating gastric mucosal and epidermal keratinocytes. The intracellular localization of this protein varies with different cell types. The endosomal localization is primarily found in antigen-presenting cells and gastric cells. The membrane association is observed with certain cell types such as erythrocytes, osteoclasts, gastric parietal cells and renal proximal tubule cells. This enzyme is also found in the endoplasmic reticulum, Golgi complex and cytosolic compartments in various cell types. In addition to its intracellular localization, cathepsin E occurs in the culture medium of activated phagocytes and cancer cells as the catalytically active enzyme. Its strategic expression and localization thus suggests the association of this enzyme with specific biological functions of the individual cell types. Recent genetic and pharmacological studies have particularly suggested that cathepsin E plays an important role in host defense against cancer cells and invading microorganisms. This review focuses emerging roles of cathepsin E in immune system cells and skin keratinocytes, and in host defense against cancer cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Kenji Yamamoto
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
17
|
Lopez-Castejon G, Theaker J, Pelegrin P, Clifton AD, Braddock M, Surprenant A. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases. THE JOURNAL OF IMMUNOLOGY 2010; 185:2611-9. [PMID: 20639492 DOI: 10.4049/jimmunol.1000436] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ATP-gated P2X(7) receptor (P2X(7)R) is a promising therapeutic target in chronic inflammatory diseases with highly specific antagonists currently under clinical trials for rheumatoid arthritis. Anti-inflammatory actions of P2X(7)R antagonists are considered to result from inhibition of P2X(7)R-induced release of proinflammatory cytokines from activated macrophages. However, P2X(7)Rs are also expressed in resting macrophages, suggesting that P2X(7)R may also signal via cytokine-independent mechanisms involved in joint disease. In this study, we examined P2X(7)R function in resting human lung macrophages and mouse bone marrow-derived macrophages and found that ATP induced rapid release of the lysosomal cysteine proteases cathepsin B, K, L, and S and that was independent of the presence of the proinflammatory cytokines IL-1beta and IL-18. Cathepsins released into the medium were effective to degrade collagen extracellular matrix. ATP-induced cathepsin release was abolished by P2X(7)R antagonists, absent from P2X(7)R(-/-) mouse macrophages, and not associated with cell death. Our results suggest P2X(7)R activation may play a novel and direct role in tissue damage through release of cathepsins independently of its proinflammatory actions via IL-1 cytokines.
Collapse
|
18
|
Raiber EA, Tulone C, Zhang Y, Martinez-Pomares L, Steed E, Sponaas AM, Langhorne J, Noursadeghi M, Chain BM, Tabor AB. Targeted delivery of antigen processing inhibitors to antigen presenting cells via mannose receptors. ACS Chem Biol 2010; 5:461-476. [PMID: 20349916 DOI: 10.1021/cb100008p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improved chemical inhibitors are required to dissect the role of specific antigen processing enzymes and to complement genetic models. In this study we explore the in vitro and in vivo properties of a novel class of targeted inhibitor of aspartic proteinases, in which pepstatin is coupled to mannosylated albumin (MPC6), creating an inhibitor with improved solubility and the potential for selective cell tropism. Using these compounds, we have demonstrated that MPC6 is taken up via mannose receptor facilitated endocytosis, leading to a slow but continuous accumulation of inhibitor within large endocytic vesicles within dendritic cells and a parallel inhibition of intracellular aspartic proteinase activity. Inhibition of intracellular proteinase activity is associated with reduction in antigen processing activity, but this is epitope-specific, preferentially inhibiting processing of T cell epitopes buried within compact proteinase-resistant protein domains. Unexpectedly, we have also demonstrated, using quenched fluorescent substrates, that little or no cleavage of the disulfide linker takes place within dendritic cells. This does not appear to affect the activity of MPC6 as an inhibitor of cathepsins D and E in vitro and in vivo. Finally, we have shown that MPC6 selectively targets dendritic cells and macrophages in spleen in vivo. Preliminary results suggest that access to nonlymphoid tissues is very limited in the steady state but is strongly enhanced at local sites of inflammation. The strategy adopted for MPC6 synthesis may therefore represent a more general way to deliver chemical inhibitors to cells of the innate immune system, especially at sites of inflammation.
Collapse
Affiliation(s)
| | | | - Yanjing Zhang
- Division of Infection and Immunity, UCL, London, U.K
| | | | - Emily Steed
- Division of Infection and Immunity, UCL, London, U.K
| | - Anna M. Sponaas
- Division of Parasitology, National Institute for Medical Research, London, U.K
| | - Jean Langhorne
- Division of Parasitology, National Institute for Medical Research, London, U.K
| | | | | | | |
Collapse
|
19
|
Induction of immune tolerance to FIX by intramuscular AAV gene transfer is independent of the activation status of dendritic cells. Blood 2009; 115:500-9. [PMID: 19965663 DOI: 10.1182/blood-2009-08-239509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nature of viral vectors is suggested to be a significant contributor to undesirable immune responses subsequent to gene transfer. Such viral vectors, recognized as danger signals by the host immune system, activate dendritic cells (DCs), causing unwanted antivector and/or transgene product immunity. We recently reported efficient induction of immune tolerance to coagulation factor IX (FIX) by direct intramuscular injection of adeno-associated virus (AAV)-FIX. AAV vectors are nonpathogenic and elicit minimal inflammatory response. We hypothesized that the nonpathogenic nature of AAV plays a critical role in induction of tolerance after AAV gene transfer. We observed inefficient recruitment and activation of DCs subsequent to intramuscular injection of AAV. To further validate our hypothesis, we examined immune responses to FIX after intramuscular injection of AAV with simultaneous activation of DCs. We were able to achieve phenotypic and functional activation of DCs after administration of lipopolysaccharide and anti-CD40 antibody. However, we observed efficient induction of FIX tolerance irrespective of DC activation in mice with different genetic and major histocompatibility complex backgrounds. Furthermore, activation of DCs did not exaggerate the immune response induced after intramuscular injection of AAV serotype 2 vector. Our results demonstrate that induction of FIX tolerance after AAV gene transfer is independent of DC activation status.
Collapse
|
20
|
Hume DA. Macrophages as APC and the dendritic cell myth. THE JOURNAL OF IMMUNOLOGY 2009; 181:5829-35. [PMID: 18941170 DOI: 10.4049/jimmunol.181.9.5829] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|