1
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Duckworth EEM, Romoser KR, Ott JA, Deiss TC, Gulland FMD, Criscitiello MF. Using PacBio SMRT data for identification of class I MHC alleles in a wildlife species, Zalophus californianus (California sea lion). INFECTION GENETICS AND EVOLUTION 2020; 88:104700. [PMID: 33387691 DOI: 10.1016/j.meegid.2020.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
High allelic polymorphism and association with disease susceptibility has made the genes encoding major histocompatibility complex (MHC) antigen presentation molecules in humans, domesticated animals, and wildlife species of wide interest to ecologists, evolutionary biologists, and health specialists. The often multifaceted polygenism and extreme polymorphism of this immunogenetic system have made it especially difficult to characterize in non-model species. Here we compare and contrast the workflows of traditional Sanger sequencing of plasmid-cloned amplicons to Pacific Biosciences SMRT circular consensus sequencing (CCS) in their ability to capture alleles of MHC class I in a wildlife species where characterization of these genes was absent. We assessed two California sea lions (Zalophus californianus), a species suffering from a high prevalence of an aggressive cancer associated with a sexually transmitted gamma herpesvirus. In this pilot study, SMRT CCS proved superior in identifying more alleles from each animal than the more laborious plasmid cloning/Sanger workflow (12:7, 10:7), and no alleles were identified with the cloning/Sanger approach that were not identified by SMRT CCS. We discuss the advantages and disadvantages of each approach including cost, allele rarefaction, and sequence fidelity.
Collapse
Affiliation(s)
- Ellen E M Duckworth
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Kaitlyn R Romoser
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Molecular Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
3
|
Yuan H, Ma L, Zhang L, Li X, Xia C. Crystal structure of the giant panda MHC class I complex: First insights into the viral peptide presentation profile in the bear family. Protein Sci 2020; 29:2468-2481. [PMID: 33078460 DOI: 10.1002/pro.3980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
The viral cytotoxic T lymphocyte (CTL) epitope peptides presented by classical MHC-I molecules require the assembly of a peptide-MHC-I-β2m (pMHC-I) trimolecular complex for T cell receptor (TCR) recognition, which is the critical activation link for triggering antiviral T cell immunity. Research on T cell immunology in the Ursidae family, especially structural immunology, is still lacking. In this study, the structure of the key trimolecular complex pMHC-I, which binds a peptide from canine distemper virus, was solved for the first time using giant panda as a representative species of Ursidae. The structural characteristics of the giant panda pMHC-I complex (pAime-128), including the unique pockets in the peptide-binding groove (PBG), were analyzed in detail. Comparing the pAime-128 to others in the bear family and extending the comparison to other mammals revealed distinct features. The interaction between MHC-I and β2m, the features of pAime-128 involved in TCR docking and cluster of differentiation 8 (CD8) binding, the anchor sites in the PBG, and the CTL epitopes of potential viruses that infect pandas were clarified. Unique features of pMHC-I viral antigen presentation in the panda were revealed by solving the three-dimensional (3D) structure of pAime-128. The distinct characteristics of pAime-128 indicate an unusual event that emerged during the evolution of the MHC system in the bear family. These results provide a new platform for research on panda CTL immunity and the design of vaccines for application in the bear family.
Collapse
Affiliation(s)
- Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, Henan, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
5
|
Abduriyim S, Nishita Y, Kosintsev PA, Raichev E, Väinölä R, Kryukov AP, Abramov AV, Kaneko Y, Masuda R. Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae). Heredity (Edinb) 2019; 122:205-218. [PMID: 29959426 PMCID: PMC6327056 DOI: 10.1038/s41437-018-0100-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022] Open
Abstract
Because of their role in immune defense against pathogens, major histocompatibility complex (MHC) genes are useful in evolutionary studies on how wild vertebrates adapt to their environments. We investigated the molecular evolution of MHC class I (MHCI) genes in four closely related species of Eurasian badgers, genus Meles. All four species of badgers showed similarly high variation in MHCI sequences compared to other Carnivora. We identified 7-21 putatively functional MHCI sequences in each of the badger species, and 2-7 sequences per individual, indicating the existence of 1-4 loci. MHCI exon 2 and 3 sequences encoding domains α1 and α2 exhibited different clade topologies in phylogenetic networks. Non-synonymous nucleotide substitutions at codons for antigen-binding sites exceeded synonymous substitutions for domain α1 but not for domain α2, suggesting that the domains α1 and α2 likely had different evolutionary histories in these species. Positive selection and recombination seem to have shaped the variation in domain α2, whereas positive selection was dominant in shaping the variation in domain α1. In the separate phylogenetic analyses for exon 2, exon 3, and intron 2, each showed three clades of Meles alleles, with rampant trans-species polymorphism, indicative of the long-term maintenance of ancestral MHCI polymorphism by balancing selection.
Collapse
Affiliation(s)
- Shamshidin Abduriyim
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoshinori Nishita
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Pavel A Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620144, Russia
| | - Evgeniy Raichev
- Agricultural Faculty, Trakia University, 6000, Stara Zagora, Bulgaria
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, FI-00014, Helsinki, Finland
| | - Alexey P Kryukov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Alexei V Abramov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Yayoi Kaneko
- Carnivore Ecology and Conservation Research Group, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ryuichi Masuda
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
6
|
Du L, Li W, Fan Z, Shen F, Yang M, Wang Z, Jian Z, Hou R, Yue B, Zhang X. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics. Mol Ecol Resour 2015; 15:1001-13. [DOI: 10.1111/1755-0998.12367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Lianming Du
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Wujiao Li
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife; Chengdu Research Base of Giant Panda Breeding; Chengdu Sichuan 610081 China
| | - Mingyu Yang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zili Wang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Zuoyi Jian
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife; Chengdu Research Base of Giant Panda Breeding; Chengdu Sichuan 610081 China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment; Ministry of Education; College of Life Science; Sichuan University; Chengdu Sichuan 610064 China
| |
Collapse
|
7
|
Ellis SA, Hammond JA. The functional significance of cattle major histocompatibility complex class I genetic diversity. Annu Rev Anim Biosci 2013; 2:285-306. [PMID: 25384144 DOI: 10.1146/annurev-animal-022513-114234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current concerns about food security highlight the importance of maintaining productive and disease-resistant livestock populations. Major histocompatibility complex (MHC) class I genes have a central role in immunity. A high level of diversity in these genes allows populations to survive despite exposure to rapidly evolving pathogens. This review aims to describe the key features of MHC class I genetic diversity in cattle and to discuss their role in disease resistance. Discussion centers on data derived from the cattle genome sequence and studies addressing MHC class I gene expression and function. The impact of intensive selection on MHC diversity is also considered. A high level of complexity in MHC class I genes and functionally related gene families is revealed. This highlights the need for increased efforts to determine key genetic components that govern cattle immune responses to disease, which is increasingly important in the face of changing human and environmental demands.
Collapse
Affiliation(s)
- Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom; ,
| | | |
Collapse
|
8
|
Venkataraman GM, Geraghty D, Fox J, Graves SS, Zellmer E, Storer BE, Torok-Storb BJ, Storb R. Canine DLA-79 gene: an improved typing method, identification of new alleles and its role in graft rejection and graft-versus-host disease. ACTA ACUST UNITED AC 2013; 81:204-11. [PMID: 23510416 DOI: 10.1111/tan.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/01/2022]
Abstract
Developing a preclinical canine model that predicts outcomes for hematopoietic cell transplantation in humans requires a model that mimics the degree of matching between human donor and recipient major histocompatibility complex (MHC) genes. The polymorphic class I and class II genes in mammals are typically located in a single chromosome as part of the MHC complex. However, a divergent class I gene in dogs, designated dog leukocyte antigen-79 (DLA-79), is located on chromosome 18 while other MHC genes are on chromosome 12. This gene is not taken into account while DLA matching for transplantation. Though divergent, this gene shares significant similarity in sequence and exon-intron architecture with other class I genes, and is transcribed. Little is known about the polymorphisms of DLA-79 and their potential role in transplantation. This study was aimed at exploring the reason for high rate of rejection seen in DLA-matched dogs given reduced intensity conditioning, in particular, the possibility that DLA-79 allele mismatches may be the cause. We found that about 82% of 407 dogs typed were homozygous for a single, reference allele. Owing to the high prevalence of a single allele, 87 of the 108 dogs (∼80%) transplanted were matched for DLA-79 with their donor. In conclusion, we have developed an efficient method to type alleles of a divergent MHC gene in dogs and identified two new alleles. We did not find any statistical correlation between DLA-79 allele disparity and graft rejection or graft-versus-host disease, among our transplant dogs.
Collapse
Affiliation(s)
- G M Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Isolation and characterization of class I MHC genes in the giant panda (Ailuropoda melanoleuca). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus. BMC Evol Biol 2012. [PMID: 23190438 PMCID: PMC3575356 DOI: 10.1186/1471-2148-12-230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
11
|
Wei F, Hu Y, Zhu L, Bruford MW, Zhan X, Zhang L. Black and white and read all over: the past, present and future of giant panda genetics. Mol Ecol 2012; 21:5660-74. [PMID: 23130639 DOI: 10.1111/mec.12096] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
Few species attract much more attention from the public and scientists than the giant panda (Ailuropoda melanoleuca), a popular, enigmatic but highly endangered species. The application of molecular genetics to its biology and conservation has facilitated surprising insights into the biology of giant pandas as well as the effectiveness of conservation efforts during the past decades. Here, we review the history of genetic advances in this species, from phylogeny, demographical history, genetic variation, population structure, noninvasive population census and adaptive evolution to reveal to what extent the current status of the giant panda is a reflection of its evolutionary legacy, as opposed to the influence of anthropogenic factors that have negatively impacted this species. In addition, we summarize the conservation implications of these genetic findings applied for the management of this high-profile species. Finally, on the basis of these advances and predictable future changes in genetic technology, we discuss future research directions that seem promising for giant panda biology and conservation.
Collapse
Affiliation(s)
- Fuwen Wei
- Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China.
| | | | | | | | | | | |
Collapse
|
12
|
Kuduk K, Babik W, Bojarska K, Śliwińska EB, Kindberg J, Taberlet P, Swenson JE, Radwan J. Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol 2012; 12:197. [PMID: 23031405 PMCID: PMC3508869 DOI: 10.1186/1471-2148-12-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. RESULTS We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. CONCLUSIONS Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.
Collapse
Affiliation(s)
- Katarzyna Kuduk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków, 31-016, Poland
| | - Katarzyna Bojarska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewa B Śliwińska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| | - Jonas Kindberg
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE, 901 83, Sweden
| | - Pierre Taberlet
- Laboratoire d’Ecologie Alpine (LECA), Génomique des Populations et Biodiversité, CNRS UMR 5553, Université Joseph Fourier, BP 53, Grenoble Cedex 9, F-38041, France
| | - Jon E Swenson
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Ãs, NO-1432, Norway
- Norwegian Institute for Nature Research, Trondheim, NO-7485, Norway
| | - Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
13
|
Hammond JA, Guethlein LA, Norman PJ, Parham P. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism. Immunogenetics 2012; 64:915-33. [PMID: 23001684 DOI: 10.1007/s00251-012-0651-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022]
Abstract
Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals' classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores.
Collapse
Affiliation(s)
- John A Hammond
- Department of Structural Biology, Stanford University School of Medicine, Fairchild D-159 299 Campus Drive West, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
14
|
Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T. Evolution of MHC class I genes in the European badger (Meles meles). Ecol Evol 2012; 2:1644-62. [PMID: 22957169 PMCID: PMC3434948 DOI: 10.1002/ece3.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
| | - Hannah L Dugdale
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
- Behavioural Ecology and Self-Organization, University of GroningenP.O. Box 11103, 9700 CC Groningen, The Netherlands
- Theoretical Biology, University of GroningenP.O. Box 11103, 9700 CC Groningen, The Netherlands
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
| |
Collapse
|
15
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H. Identification of the expressed MHC class II DQB gene of the Asiatic black bear, Ursus thibetanus, in Japan. Genes Genet Syst 2010; 85:147-55. [PMID: 20558901 DOI: 10.1266/ggs.85.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic diversity estimation of the major histocompatibility complex (MHC) gene may be an important tool in the assessment of immune response ability against infectious disease. We were able to identify a near full-length expressed DQB sequence by RACE-PCR method from the Asiatic black bear, Ursus thibetanus in Japan. This is the first such full length expression in the Ursidae. The bear had at least one functional DQB locus. In phylogenetic tree analysis its DQB amino acid sequence formed a monophyletic group with DQB sequences from members of the order Carnivora and had a 90% nucleotide sequence similarity with the DQB allele of the California sea lion, Zalophus californianus. We compared the DQB amino acid composition of U. thibetanus with those of several other mammalian species including Homo sapiens. Amino acid residues known to be functionally important for human MHC genes, tended to be also conserved among other mammalian species while PBRs in the beta1 domain were heterogeneous among mammalian species. The DQB sequence obtained from the bear had not only no putative frameshifts or deletions but also no abnormal amino acid mutations such as had been observed in human DQB molecules. This suggests that the bear DQB sequence was an apparently functional DQB allele. As a preliminary study, we sequenced the exon 2 region of DQB alleles from genomic DNA, and succeeded to amplify the exon 2 of DQB loci. Our study will provide useful information for conservation genetics of the U. thibetanus as well as more generally regarding the mammalian MHC region.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Biosystems Science, the Graduate University for Advanced Studies, Hayama.
| | | | | | | |
Collapse
|
16
|
Goda N, Mano T, Kosintsev P, Vorobiev A, Masuda R. Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae. ACTA ACUST UNITED AC 2010; 76:404-10. [PMID: 20630039 DOI: 10.1111/j.1399-0039.2010.01528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae.
Collapse
Affiliation(s)
- N Goda
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|