1
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Hasan MZ, Walter L. Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Front Immunol 2021; 12:678964. [PMID: 33968088 PMCID: PMC8102735 DOI: 10.3389/fimmu.2021.678964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be derived by genetic recombination of the region encoding the transmembrane and intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR possess a positively charged arginine residue in the transmembrane region. As human KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRγ) adaptor, we hypothesized that in contrast to human and great ape the activating KIRs of macaques associate with FcRγ instead of DAP12. By applying co-immunoprecipitation of transfected as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed associates with FcRγ and not with DAP12. This association with FcRγ results in increased and substantially stabilized surface expression of KIR3DS05. In addition, we demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011, resulted in signal transduction in the presence of FcRγ in contrast to DAP12.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Garzón-Ospina D, Buitrago SP. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 2019; 72:165-179. [PMID: 31838542 DOI: 10.1007/s00251-019-01151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| | - Sindy P Buitrago
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| |
Collapse
|
4
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
5
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
8
|
Identification and diversity of killer cell Ig-like receptors in Aotus vociferans, a New World monkey. PLoS One 2013; 8:e79731. [PMID: 24223188 PMCID: PMC3819253 DOI: 10.1371/journal.pone.0079731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022] Open
Abstract
Previous BAC clone analysis of the Platyrrhini owl monkey KIRs have shown an unusual genetic structure in some loci. Therefore, cDNAs encoding KIR molecules from eleven Aotus vociferans monkeys were characterized here; ten putative KIR loci were found, some of which encoded atypical proteins such as KIR4DL and transcripts predicted to encode a D0+D1 configuration (AOTVOKIR2DL1*01v1) which appear to be unique in the Aotus genus. Furthermore, alternative splicing was found as a likely mechanism for producing activator receptors in A. vociferans species. KIR proteins from New World monkeys may be split into three new lineages according to domain by domain phylogenetic analysis. Although the A. vociferans KIR family displayed a high divergence among paralogous genes, individual loci were limited in their genetic polymorphism. Selection analysis showed that both constrained and rapid evolution may operate within the AvKIR family. The frequent alternative splicing (as a likely mechanism generating activator receptors), the presence of KIR4DL and KIR2DL1 (D0+D1) molecules and other data reported here suggest that the KIR family in Aotus has had a rapid evolution, independent from its Catarrhini counterparts.
Collapse
|
9
|
Bimodal evolution of the killer cell Ig-like receptor (KIR) family in New World primates. Immunogenetics 2013; 65:725-36. [PMID: 23846852 DOI: 10.1007/s00251-013-0719-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
The immunoglobulin-like receptor (KIR) gene family in New World primates (Platyrrhini) has been characterized only in the owl monkey (Aotus sp.). To gain a better understanding of the KIR system in Platyrrhini, we analyzed a KIR haplotype in Ateles geoffroyi, and sequenced KIR complementary DNAs (cDNAs) from other three Atelidae species, Ateles hybridus, Ateles belzebuth, and Lagothrix lagotricha. Atelidae expressed a variable set of activating and inhibitory KIRs that diversified independently from their Catarrhini counterparts. They had a unique mechanism to generate activating receptors from inhibitory ones, involving a single nucleotide deletion in exon 7 and a change in the donor splice site of intron 7. The A. geoffroyi haplotype contained at least six gene models including a pseudogene, two coding inhibitory receptors, and three coding activating receptors. The centromeric region was in a tail-to-tail orientation with respect to the telomeric region. The owl monkey KIR haplotype shared this organization, and in phylogenetic trees, the centromeric genes clustered together with those of A. geoffroyi, whereas their telomeric genes clustered independently. KIR cDNAs from the other Atelidae species conformed to this pattern. Signatures of positive selection were found in residues predicted to interact with the major histocompatibility complex. Such signatures, however, primarily explained variability between paralogous genes but not between alleles in a locus. Atelidae, therefore, has expanded the KIR family in a bimodal fashion, where an inverted centromeric region has remained relatively conserved and the telomeric region has diversified by a rapid process of gene duplication and divergence, likely favored by positive selection for ligand binding.
Collapse
|
10
|
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 2013; 13:133-44. [PMID: 23334245 DOI: 10.1038/nri3370] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
11
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci 2012; 367:800-11. [PMID: 22312047 DOI: 10.1098/rstb.2011.0266] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In placental mammals, natural killer (NK) cells are a population of lymphocytes that make unique contributions to immune defence and reproduction, functions essential for survival of individuals, populations and species. Modulating these functions are conserved and variable NK-cell receptors that recognize epitopes of major histocompatibility complex (MHC) class I molecules. In humans, for example, recognition of human leucocyte antigen (HLA)-E by the CD94:NKG2A receptor is conserved, whereas recognition of HLA-A, B and C by the killer cell immunoglobulin-like receptors (KIRs) is diversified. Competing demands of the immune and reproductive systems, and of T-cell and NK-cell immunity-combined with the segregation on different chromosomes of variable NK-cell receptors and their MHC class I ligands-drive an unusually rapid evolution that has resulted in unprecedented levels of species specificity, as first appreciated from comparison of mice and humans. Counterparts to human KIR are present only in simian primates. Observed in these species is the coevolution of KIR and the four MHC class I epitopes to which human KIR recognition is restricted. Unique to hominids is the emergence of the MHC-C locus as a supplier of specialized and superior ligands for KIR. This evolutionary trend is most highly elaborated in the chimpanzee. Unique to the human KIR locus are two groups of KIR haplotypes that are present in all human populations and subject to balancing selection. Group A KIR haplotypes resemble chimpanzee KIR haplotypes and are enriched for genes encoding KIR that bind HLA class I, whereas group B KIR haplotypes are enriched for genes encoding receptors with diminished capacity to bind HLA class I. Correlating with their balance in human populations, B haplotypes favour reproductive success, whereas A haplotypes favour successful immune defence. Evolution of the B KIR haplotypes is thus unique to the human species.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
12
|
Song G, Riemer C, Dickins B, Kim HL, Zhang L, Zhang Y, Hsu CH, Hardison RC, Nisc Comparative Sequencing Program, Green ED, Miller W. Revealing mammalian evolutionary relationships by comparative analysis of gene clusters. Genome Biol Evol 2012; 4:586-601. [PMID: 22454131 PMCID: PMC3342878 DOI: 10.1093/gbe/evs032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2012] [Indexed: 12/13/2022] Open
Abstract
Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events. We developed a computational method for automatically mapping both types of orthology on a per-nucleotide basis in gene cluster regions studied by comparative sequencing, and we make this mapping accessible by visualizing the output. All of these steps are incorporated into our newly extended CHAP 2 package. We evaluate our method using both simulated data and real gene clusters (including the well-characterized α-globin and β-globin clusters). We also illustrate use of CHAP 2 by analyzing four more loci: CCL (chemokine ligand), IFN (interferon), CYP2abf (part of cytochrome P450 family 2), and KIR (killer cell immunoglobulin-like receptors). These new methods facilitate and extend our understanding of evolution at these and other loci by adding automated accurate evolutionary inference to the biologist's toolkit. The CHAP 2 package is freely available from http://www.bx.psu.edu/miller_lab.
Collapse
Affiliation(s)
- Giltae Song
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ansari AA, Mayne AE, Takahashi Y, Pattanapanyasat K. Incorporation of innate immune effector mechanisms in the formulation of a vaccine against HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 780:143-59. [PMID: 21842371 DOI: 10.1007/978-1-4419-5632-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The realization of a major role for events that occur during acute viremia that dictate the course of disease both in HIV-1 infected humans and susceptible SIV infected non-human primates has prompted an intense interest in studies of the contribution of innate immune effector mechanisms. It is reasoned that findings from such studies may be important and need to be incorporated into the design and formulation of potential candidate vaccines against HIV-1. This review serves to outline the various non-human primate models that can best serve to address this issue, a summary of our knowledge on the various subsets of NK cells (one of the major innate immune cell lineage) that have an impact on the course of disease, the potential pathways that regulate their function and the potential role of the KIRs on SIV-induced disease course. Finally, the major points from this report and the data presented on similar subjects by other investigators is utilized to provide a summary of the potential future directions that we need to take in efforts to move this field forward.
Collapse
Affiliation(s)
- Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
14
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:11-9. [PMID: 21690332 PMCID: PMC3223120 DOI: 10.4049/jimmunol.0902332] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual's NK cell response and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time scales, this component of immunity is exceptionally dynamic, unstable, and short-lived, being dependent on coevolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK cell receptors are largely species specific and have recruited different classes of glycoprotein, even within the primate order of mammals. Such disparity helps to explain substantial differences in NK cell biology between humans and animal models, for which the population genetics is largely ignored. KIR3DL1/S1, which recognizes the Bw4 epitope of HLA-A and -B and is the most extensively studied of the variable NK cell receptors, exemplifies how variation in all possible parameters of function is recruited to diversify the human NK cell response.
Collapse
MESH Headings
- Alleles
- Animals
- Disease Models, Animal
- Evolution, Molecular
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Phylogeny
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Receptors, KIR3DL1/metabolism
- Receptors, KIR3DS1/genetics
- Receptors, KIR3DS1/immunology
- Receptors, KIR3DS1/metabolism
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Paul J. Norman
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Laurent Abi-Rached
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
15
|
Walter L. Major histocompatibility complex class-I-interacting natural killer cell receptors of nonhuman primates. J Innate Immun 2011; 3:236-41. [PMID: 21411971 DOI: 10.1159/000323932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/24/2010] [Indexed: 12/17/2022] Open
Abstract
Human natural killer (NK) cell receptors are known to be highly polymorphic, to show complex genetics and to be associated with susceptibility to a variety of immunological diseases. Nonhuman primates are used as important models of these diseases, yet the knowledge of nonhuman primate NK cell receptors and ligands is not as advanced as in humans. Recently published data indicated that diversity and polymorphism of NK cell receptors are similar between nonhuman primates and humans. Comparative genomics revealed instructive insights into the evolution and function of primate NK cell receptor genes and contributed to the understanding of how present-day NK cell receptors and their ligands have evolved. Here, I review the current knowledge of nonhuman primate NK cell receptors that interact with major histocompatibility complex class I proteins.
Collapse
Affiliation(s)
- Lutz Walter
- Primatengenetik, Deutsches Primatenzentrum, Leibniz-Institut für Primatenforschung, Göttingen, Deutschland.
| |
Collapse
|
16
|
Parham P, Abi-Rached L, Matevosyan L, Moesta AK, Norman PJ, Older Aguilar AM, Guethlein LA. Primate-specific regulation of natural killer cells. J Med Primatol 2010; 39:194-212. [PMID: 20618586 DOI: 10.1111/j.1600-0684.2010.00432.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin-like and immunoglobulin-like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species-specific differences. The variable, polymorphic family of killer cell immunoglobulin-like receptors (KIR) that regulate human NK cell development and function arose recently, from a single-copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co-evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non-human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non-human primate species, at a level comparable to that achieved for the human species.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Older Aguilar AM, Guethlein LA, Adams EJ, Abi-Rached L, Moesta AK, Parham P. Coevolution of killer cell Ig-like receptors with HLA-C to become the major variable regulators of human NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4238-51. [PMID: 20805421 DOI: 10.4049/jimmunol.1001494] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between HLA class I and killer cell Ig-like receptors (KIRs) diversify human NK cell responses. Dominant KIR ligands are the C1 and C2 epitopes of MHC-C, a young locus restricted to humans and great apes. C1- and C1-specific KIRs evolved first, being present in orangutan and functionally like their human counterparts. Orangutans lack C2 and C2-specific KIRs, but have a unique C1+C2-specific KIR that binds equally to C1 and C2. A receptor with this specificity likely provided the mechanism by which C2-KIR interaction evolved from C1-KIR while avoiding a nonfunctional intermediate, that is, either orphan receptor or ligand. Orangutan inhibitory MHC-C-reactive KIRs pair with activating receptors of identical avidity and specificity, contrasting with the selective attenuation of human activating KIRs. The orangutan C1-specific KIR reacts or cross-reacts with all four polymorphic epitopes (C1, C2, Bw4, and A3/11) recognized by human KIRs, revealing their structural commonality. Saturation mutagenesis at specificity-determining position 44 demonstrates that KIRs are inherently restricted to binding just these four epitopes, either individually or in combination. This restriction frees most HLA-A and HLA-B variants to be dedicated TCR ligands, not subject to conflicting pressures from the NK cell and T cell arms of the immune response.
Collapse
|
18
|
Bostik P, Takahashi Y, Mayne AE, Ansari AA. Innate immune natural killer cells and their role in HIV and SIV infection. HIV THERAPY 2010; 4:483-504. [PMID: 20730028 PMCID: PMC2922771 DOI: 10.2217/hiv.10.28] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The findings that early events during HIV-1 and SIV infection of Asian rhesus macaques dictate the levels of viremia and rate of disease progression prior to the establishment of mature and effective adaptive immune responses strongly suggest an important role for innate immune mechanisms. In addition, the fact that the major target of HIV and SIV during this period of acute infection is the gastrointestinal tissue suggests that whatever role the innate immune system plays must either directly and/or indirectly focus on the GI tract. The object of this article is to provide a general overview of the innate immune system with a focus on natural killer (NK) cells and their role in the pathogenesis of lentivirus infection. The studies summarized include our current understanding of the phenotypic heterogeneity, the putative functions ascribed to the subsets, the maturation/differentiation of NK cells, the mechanisms by which their function is mediated and regulated, the studies of these NK-cell subsets, with a focus on killer cell immunoglobulin-like receptors (KIRs) in nonhuman primates and humans, and finally, how HIV and SIV infection affects these NK cells in vivo. Clearly much has yet to be learnt on how the innate immune system influences the interaction between lentiviruses and the host within the GI tract, knowledge of which is reasoned to be critical for the formulation of effective vaccines against HIV-1.
Collapse
Affiliation(s)
- Pavel Bostik
- Faculty of Military Health Sciences, University of Defense & Department of Infectious Diseases, Charles University School of Medicine, Hradec-Kralove, Czech Republic
| | - Yoshiaki Takahashi
- Room 2309 WMB, Department of Pathology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Ann E Mayne
- Room 2309 WMB, Department of Pathology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Aftab A Ansari
- Room 2309 WMB, Department of Pathology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Biassoni R, Ugolotti E, De Maria A. Comparative analysis of NK-cell receptor expression and function across primate species: Perspective on antiviral defenses. SELF NONSELF 2010; 1:103-113. [PMID: 21487512 DOI: 10.4161/self.1.2.11717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/06/2010] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells are lymphoid effectors that are involved in the innate immune surveillance against infected and/or tumor cells. Their function is under the fine-tuning control of cell surface receptors that display either inhibitory or activating function and in healthy condition, mediate self-tolerance. It is known that inhibitory receptors are characterized by clonal and stochastic distribution and are extremely sensible to any modification, downregulation or loss of MHC class I surface expression that are induced in autologous cells upon viral infection or cancer transformation. This alteration of the MHC class I expression weakens the strength of the inhibitory receptor-induced interaction, thus resulting in a prompt triggering of NK cell function, which ends up in the inhibition of tumor progression and proliferation of pathogen-infected cells. Thus, the inhibitory function of NK cells is only one face of the coin, since NK-cell activation is controlled by different arrays of activating receptors that finally are involved in the induction of cytolysis and/or cytokine release. Interestingly, the inhibitory NK-cell receptors that are involved in dampening NK cell-mediated responses evolved during speciation in different, often structurally unrelated surface-expressed molecules, all using a conserved signaling pathway. In detail, during evolution, the inhibitory receptors that assure the recognition of MHC class I molecules, originate in, at least, three different ways. This ended up in multigene families showing marked structural divergences that coevolved in a convergent way with the availability of appropriate MHC ligand molecules.
Collapse
Affiliation(s)
- Roberto Biassoni
- Molecular Medicine-Istituto Scientifico Giannina Gaslini; Genova, Italy
| | | | | |
Collapse
|
20
|
Blokhuis JH, van der Wiel MK, Doxiadis GGM, Bontrop RE. The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics 2010; 62:295-306. [PMID: 20204612 PMCID: PMC2858804 DOI: 10.1007/s00251-010-0434-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
To further refine and improve biomedical research in rhesus macaques, it is necessary to increase our knowledge concerning both the degree of allelic variation (polymorphism) and diversity (gene copy number variation) in the killer cell immunoglobulin-like receptor (KIR) gene cluster. Pedigreed animals in particular should be studied, as segregation data will provide clues to the linkage of particular KIR genes/alleles segregating on a haplotype and to its gene content as well. A dual strategy allowed us to screen the presence and absence of genes and the corresponding transcripts, as well as to track differences in transcription levels. On the basis of this approach, 14 diverse KIR haplotypes have been described. These haplotypes consist of multiple inhibitory and activating Mamu-KIR genes, and any gene present on one haplotype may be absent on another. This suggests that the cost of accelerated evolution by recombination may be the loss of certain framework genes on a haplotype.
Collapse
Affiliation(s)
- Jeroen H Blokhuis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 139, 2288GJ, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Abi-Rached L, Kuhl H, Roos C, ten Hallers B, Zhu B, Carbone L, de Jong PJ, Mootnick AR, Knaust F, Reinhardt R, Parham P, Walter L. A small, variable, and irregular killer cell Ig-like receptor locus accompanies the absence of MHC-C and MHC-G in gibbons. THE JOURNAL OF IMMUNOLOGY 2009; 184:1379-91. [PMID: 20026738 DOI: 10.4049/jimmunol.0903016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The killer cell Ig-like receptors (KIRs) of NK cells recognize MHC class I ligands and function in placental reproduction and immune defense against pathogens. During the evolution of monkeys, great apes, and humans, an ancestral KIR3DL gene expanded to become a diverse and rapidly evolving gene family of four KIR lineages. Characterizing the KIR locus are three framework regions, defining two intervals of variable gene content. By analysis of four KIR haplotypes from two species of gibbon, we find that the smaller apes do not conform to these rules. Although diverse and irregular in structure, the gibbon haplotypes are unusually small, containing only two to five functional genes. Comparison with the predicted ancestral hominoid KIR haplotype indicates that modern gibbon KIR haplotypes were formed by a series of deletion events, which created new hybrid genes as well as eliminating ancestral genes. Of the three framework regions, only KIR3DL3 (lineage V), defining the 5' end of the KIR locus, is present and intact on all gibbon KIR haplotypes. KIR2DL4 (lineage I) defining the central framework region has been a major target for elimination or inactivation, correlating with the absence of its putative ligand, MHC-G, in gibbons. Similarly, the MHC-C-driven expansion of lineage III KIR genes in great apes has not occurred in gibbons because they lack MHC-C. Our results indicate that the selective forces shaping the size and organization of the gibbon KIR locus differed from those acting upon the KIR of other hominoid species.
Collapse
Affiliation(s)
- Laurent Abi-Rached
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, Aujard F, Münch C, Schempp W, Carrington M, Shiina T, Inoko H, Knaust F, Coggill P, Sehra H, Beck S, Abi-Rached L, Reinhardt R, Walter L. A novel system of polymorphic and diverse NK cell receptors in primates. PLoS Genet 2009; 5:e1000688. [PMID: 19834558 PMCID: PMC2757895 DOI: 10.1371/journal.pgen.1000688] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/17/2009] [Indexed: 11/21/2022] Open
Abstract
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.
Collapse
Affiliation(s)
- Anne Averdam
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
| | - Beatrix Petersen
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
| | - Cornelia Rosner
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
| | - Jennifer Neff
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
| | - Christian Roos
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
- Gene Bank of Primates, German Primate Centre, Göttingen, Germany
| | - Manfred Eberle
- Department of Behavioural Ecology and Sociobiology, German Primate Centre, Göttingen, Germany
| | - Fabienne Aujard
- Adaptive Mechanisms and Evolution, UMR CNRS/MNHN 7179, Brunoy, France
| | - Claudia Münch
- Institute for Human Genetics, University of Freiburg, Freiburg, Germany
| | - Werner Schempp
- Institute for Human Genetics, University of Freiburg, Freiburg, Germany
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | | | | | - Florian Knaust
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Stephan Beck
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Laurent Abi-Rached
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Lutz Walter
- Department of Primate Genetics, German Primate Centre, Göttingen, Germany
- Gene Bank of Primates, German Primate Centre, Göttingen, Germany
| |
Collapse
|
23
|
Parga-Lozano C, Reguera R, Gomez-Prieto P, Arnaiz-Villena A. Evolution of major histocompatibility complex G and C and natural killer receptors in primates. Hum Immunol 2009; 70:1035-40. [PMID: 19651181 DOI: 10.1016/j.humimm.2009.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Major histocompatibility complex (MHC)-G and -C molecules bear ligands to natural killer immunoglobulin receptors (KIR). MHC-G evolution in primates shows some anomalies. In New World monkeys MHC-G molecules show a high polymorphism and most likely are classical antigen presenters; they also cluster closer to MHC-E in a relatedness dendrogram. Their genes lack intron 2 deletion, which is typical of all other primates in regard to MHC-G. Medium-sized Eurasian-African monkeys (Cercopithecinae) show stop codons in exon 3: only MHC-G isoforms without exon 3 are possible. Big apes such as the orangutan, gorilla, and chimpanzee as well as human beings show limited HLA-G polymorphism. HLA-C has not been found in medium-size Eurasian-African monkeys, but we have found MHC-C DNA sequences in more evolutionary ancient New World monkeys. Taking into account that the KIR inhibitory receptors signal is dominated by MHC-C in human beings, this suggests that both MHC-C molecules and their ligands within natural killer lymphocyte KIR also exist in the most evolutionary ancient apes (New World monkeys were present on Earth before 40 million years ago), as KIR receptors also appeared before 130 million years ago in evolution. Indeed, KIR receptor genes have recently been found in a New World monkey.
Collapse
Affiliation(s)
- Carlos Parga-Lozano
- Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain
| | | | | | | |
Collapse
|