1
|
Karl JA, Prall TM, Bussan HE, Varghese JM, Pal A, Wiseman RW, O'Connor DH. Complete sequencing of a cynomolgus macaque major histocompatibility complex haplotype. Genome Res 2023; 33:448-462. [PMID: 36854669 PMCID: PMC10078292 DOI: 10.1101/gr.277429.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Macaques provide the most widely used nonhuman primate models for studying the immunology and pathogenesis of human diseases. Although the macaque major histocompatibility complex (MHC) region shares most features with the human leukocyte antigen (HLA) region, macaques have an expanded repertoire of MHC class I genes. Although a chimera of two rhesus macaque MHC haplotypes was first published in 2004, the structural diversity of MHC genomic organization in macaques remains poorly understood owing to a lack of adequate genomic reference sequences. We used ultralong Oxford Nanopore and high-accuracy Pacific Biosciences (PacBio) HiFi sequences to fully assemble the ∼5.2-Mb M3 haplotype of an MHC-homozygous, Mauritian-origin cynomolgus macaque (Macaca fascicularis). The MHC homozygosity allowed us to assemble a single MHC haplotype unambiguously and avoid chimeric assemblies that hampered previous efforts to characterize this exceptionally complex genomic region in macaques. The high quality of this new assembly is exemplified by the identification of an extended cluster of six Mafa-AG genes that contains a recent duplication with a highly similar ∼48.5-kb block of sequence. The MHC class II region of this M3 haplotype is similar to the previously sequenced rhesus macaque haplotype and HLA class II haplotypes. The MHC class I region, in contrast, contains 13 MHC-B genes, four MHC-A genes, and three MHC-E genes (vs. 19 MHC-B, two MHC-A, and one MHC-E in the previously sequenced haplotype). These results provide an unambiguously assembled single contiguous cynomolgus macaque MHC haplotype with fully curated gene annotations that will inform infectious disease and transplantation research.
Collapse
Affiliation(s)
- Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Trent M Prall
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Hailey E Bussan
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Joshua M Varghese
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Aparna Pal
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA;
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| |
Collapse
|
2
|
de Groot NG, de Groot N, de Vos-Rouweler AJM, Louwerse A, Bruijnesteijn J, Bontrop RE. Dynamic evolution of Mhc haplotypes in cynomolgus macaques of different geographic origins. Immunogenetics 2022; 74:409-429. [PMID: 35084546 PMCID: PMC8792142 DOI: 10.1007/s00251-021-01249-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
The major histocompatibility complex (MHC) plays a key role in immune defense, and the Mhc genes of cynomolgus macaque display a high degree of polymorphism. Based on their geographic distribution, different populations of cynomolgus macaques are recognized. Here we present the characterization of the Mhc class I and II repertoire of a large pedigreed group of cynomolgus macaques originating from the mainland north of the isthmus of Kra (N = 42). Segregation analyses resulted in the definition of 81 unreported Mafa-A/B/DRB/DQ/DP haplotypes, which include 32 previously unknown DRB regions. In addition, we report 13 newly defined Mafa-A/B/DRB/DQ/DP haplotypes in a group of cynomolgus macaques originating from the mainland south of the isthmus of Kra/Maritime Southeast Asia (N = 16). A relatively high level of sharing of Mafa-A (51%) and Mafa-B (40%) lineage groups is observed between the populations native to the north and the south of isthmus of Kra. At the allelic level, however, the Mafa-A/B haplotypes seem to be characteristic of a population. An overall comparison of all currently known data revealed that each geographic population has its own specific combinations of Mhc class I and II haplotypes. This illustrates the dynamic evolution of the cynomolgus macaque Mhc region, which was most likely generated by recombination and maintained by selection due to the differential pathogenic pressures encountered in different geographic areas.
Collapse
Affiliation(s)
- Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands.
| | - Nanine de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | | | - Annet Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
3
|
Hasan MZ, Walter L. Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Front Immunol 2021; 12:678964. [PMID: 33968088 PMCID: PMC8102735 DOI: 10.3389/fimmu.2021.678964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activating killer cell immunoglobulin-like receptors (KIR) in macaques are thought to be derived by genetic recombination of the region encoding the transmembrane and intracellular part of KIR2DL4 and a KIR3D gene. As a result, all macaque activating KIR possess a positively charged arginine residue in the transmembrane region. As human KIR2DL4 associates with the FCER1G (also called Fc receptor-gamma, FcRγ) adaptor, we hypothesized that in contrast to human and great ape the activating KIRs of macaques associate with FcRγ instead of DAP12. By applying co-immunoprecipitation of transfected as well as primary cells, we demonstrate that rhesus macaque KIR3DS05 indeed associates with FcRγ and not with DAP12. This association with FcRγ results in increased and substantially stabilized surface expression of KIR3DS05. In addition, we demonstrate that binding of specific ligands of KIR3DS05, Mamu-A1*001 and A1*011, resulted in signal transduction in the presence of FcRγ in contrast to DAP12.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
4
|
de Groot NG, Heijmans CMC, Bezstarosti S, Bruijnesteijn J, Haasnoot GW, Mulder A, Claas FHJ, Heidt S, Bontrop RE. Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. THE JOURNAL OF IMMUNOLOGY 2021; 206:1957-1965. [PMID: 33692147 DOI: 10.4049/jimmunol.2001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
MHC class I molecules play an important role in adaptive immune responses against intracellular pathogens. These molecules are highly polymorphic, and many allotypes have been characterized. In a transplantation setting, a mismatch between MHC allotypes may initiate an alloimmune response. Rhesus macaques (Macaca mulatta, Mamu) are valuable as a preclinical model species in transplantation research as well as to evaluate the safety and efficacy of vaccine candidates. In both lines of research, the availability of nonhuman primate MHC-reactive mAbs may enable in vitro monitoring and detection of presence of particular Mamu molecules. In this study, we screened a collection of thoroughly characterized HLA class I-specific human mAbs for cross-reactivity with rhesus macaque MHC class I allotypes. Two mAbs, OK4F9 and OK4F10, recognize an epitope that is defined by isoleucine (I) at amino acid position 142 that is present on the Indian rhesus macaque Mamu-B*008:01 allotype, which is an allotype known to be associated with elite control of SIV replication. The reactive pattern of a third mAb, MUS4H4, is more complex and includes an epitope shared on Mamu-A2*05:01 and -B*001:01-encoded Ags. This is the first description, to our knowledge, of human HLA-reactive mAbs that can recognize Mamu allotypes, and these can be useful tools for in vitro monitoring the presence of the relevant allelic products. Moreover, OK4F9 and OK4F10 can be powerful mAbs for application in SIV-related research.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
5
|
Heijmans CMC, de Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int J Immunogenet 2020; 47:243-260. [PMID: 32358905 DOI: 10.1111/iji.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions.
Collapse
Affiliation(s)
- Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Huang S, Huang X, Li S, Zhu M, Zhuo M. MHC class I allele diversity in cynomolgus macaques of Vietnamese origin. PeerJ 2019; 7:e7941. [PMID: 31720104 PMCID: PMC6836755 DOI: 10.7717/peerj.7941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have been used as important experimental animal models for carrying out biomedical researches. The results of biomedical experiments strongly depend on the immunogenetic background of animals, especially on the diversity of major histocompatibility complex (MHC) alleles. However, there is much less information available on the polymorphism of MHC class I genes in cynomolgus macaques, than is currently available for humans. In this study, we have identified 40 Mafa-A and 60 Mafa-B exons 2 and 3 sequences from 30 unrelated cynomolgus macaques of Vietnamese origin. Among these alleles, 28 are novel. As for the remaining 72 known alleles, 15 alleles are shared with other cynomolgus macaque populations and 32 are identical to alleles previously reported in other macaque species. A potential recombination event was observed between Mafa-A1*091:02 and Mafa-A1*057:01. In addition, the Mafa-A1 genes were found to be more diverse than human HLA-A and the functional residues for peptide binding sites (PBS) or TCR binding sites (TBS) in Mafa-A1 have greater variability than that for non-PBS or non-TBS regions. Overall, this study provides important information on the diversity of Mafa-A and Mafa-B alleles from Vietnamese origin, which may help researchers to choose the most appropriate animals for their studies.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
de Groot NG, Heijmans CMC, de Ru AH, Janssen GMC, Drijfhout JW, Otting N, Vangenot C, Doxiadis GGM, Koning F, van Veelen PA, Bontrop RE. A Specialist Macaque MHC Class I Molecule with HLA-B*27-like Peptide-Binding Characteristics. THE JOURNAL OF IMMUNOLOGY 2017; 199:3679-3690. [PMID: 29021373 DOI: 10.4049/jimmunol.1700502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Christelle Vangenot
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; and
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
8
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Expression patterns of killer cell immunoglobulin-like receptors (KIR) of NK-cell and T-cell subsets in Old World monkeys. PLoS One 2013; 8:e64936. [PMID: 23717676 PMCID: PMC3661512 DOI: 10.1371/journal.pone.0064936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/23/2013] [Indexed: 02/04/2023] Open
Abstract
The expression of killer cell immunoglobulin-like receptors (KIR) on lymphocytes of rhesus macaques and other Old World monkeys was unknown so far. We used our recently established monoclonal anti-rhesus macaque KIR antibodies in multicolour flow cytometry for phenotypic characterization of KIR protein expression on natural killer (NK) cells and T cell subsets of rhesus macaques, cynomolgus macaques, hamadryas baboons, and African green monkeys. Similar to human KIR, we found clonal expression patterns of KIR on NK and T cell subsets in rhesus macaques and differences between individuals using pan-KIR3D antibody 1C7 and antibodies specific for single KIR. Similar results were obtained with lymphocytes from the other studied species. Notably, African green monkeys show only a low frequency of KIR3D expressed on CD8+ αβT cells. Contrasting human NK cells are KIR-positive CD56bright NK cells and frequencies of KIR-expressing NK cells that are independent of the presence of their cognate MHC class I ligands in rhesus macaques. Interestingly, the frequency of KIR-expressing cells and the expression strength of KIR3D are correlated in γδ T cells of rhesus macaques and CD8+ αβT cells of baboons.
Collapse
|
10
|
Characterisation of mouse monoclonal antibodies against rhesus macaque killer immunoglobulin-like receptors KIR3D. Immunogenetics 2012; 64:845-8. [PMID: 22893031 PMCID: PMC3470681 DOI: 10.1007/s00251-012-0640-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Killer immunoglobulin-like receptors (KIRs) represent a highly polymorphic and diverse gene family in rhesus macaques. Analyses of the respective gene products have been hampered until now due to non-availability of specific monoclonal antibodies and failure of cross-reactivity of anti-human KIR antibodies. We utilised one activating (KIR3DSW08) and two inhibitory (KIR3DLW03 and KIR3DL05) rhesus macaque KIR-Fc fusion proteins for generation of monoclonal antibodies in mice. Besides broadly reacting ones, we obtained anti-rhesus macaque KIR antibodies with intermediate and with single specificity. These monoclonal antibodies were tested for binding to a panel of rhesus macaque KIR proteins after heterologous expression on transiently transfected cells. Epitope mapping identified two polymorphic regions that are located next to each other in the mature KIR proteins. The availability of monoclonal antibodies against rhesus macaque KIR proteins will enable future studies on KIR at the protein level in rhesus macaques as important animal models of human infectious diseases.
Collapse
|
11
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
12
|
Saito Y, Naruse TK, Akari H, Matano T, Kimura A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 2012; 64:131-41. [PMID: 21881951 DOI: 10.1007/s00251-011-0568-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/19/2011] [Indexed: 12/01/2022]
Abstract
Cynomolgus macaques are widely used as a primate model for human diseases associated with an immunological process. Because there are individual differences in immune responsiveness, which are controlled by the polymorphic nature of the major histocompatibility (MHC) locus, it is important to reveal the diversity of MHC in the model animal. In this study, we analyzed 26 cynomolgus macaques from five families for MHC class I genes. We identified 32 Mafa-A, 46 Mafa-B, 6 Mafa-I, and 3 Mafa-AG alleles in which 14, 20, 3, and 3 alleles were novel. There were 23 MHC class I haplotypes and each haplotype was composed of one to three Mafa-A alleles and one to five Mafa-B alleles. Family studies revealed that there were two haplotypes which contained two Mafa-A1 alleles. These observations demonstrated further the complexity of MHC class I locus in the Old World monkey.
Collapse
Affiliation(s)
- Yusuke Saito
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
13
|
Greene JM, Wiseman RW, Lank SM, Bimber BN, Karl JA, Burwitz BJ, Lhost JJ, Hawkins OE, Kunstman KJ, Broman KW, Wolinsky SM, Hildebrand WH, O'Connor DH. Differential MHC class I expression in distinct leukocyte subsets. BMC Immunol 2011; 12:39. [PMID: 21762519 PMCID: PMC3155488 DOI: 10.1186/1471-2172-12-39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022] Open
Abstract
Background MHC class I proteins are partly responsible for shaping the magnitude and focus of the adaptive cellular immune response. In humans, conventional wisdom suggests that the HLA-A, -B, and -C alleles are equally expressed on the majority of cell types. While we currently have a thorough understanding of how total MHC class I expression varies in different tissues, it has been difficult to examine expression of single MHC class I alleles due to the homogeneity of MHC class I sequences. It is unclear how cDNA species are expressed in distinct cell subsets in humans and particularly in macaques which transcribe upwards of 20 distinct MHC class I alleles at variable levels. Results We examined MHC gene expression in human and macaque leukocyte subsets. In humans, while we detected overall differences in locus transcription, we found that transcription of MHC class I genes was consistent across the leukocyte subsets we studied with only small differences detected. In contrast, transcription of certain MHC cDNA species in macaques varied dramatically by up to 45% between different subsets. Although the Mafa-B*134:02 RNA is virtually undetectable in CD4+ T cells, it represents over 45% of class I transcripts in CD14+ monocytes. We observed parallel MHC transcription differences in rhesus macaques. Finally, we analyzed expression of select MHC proteins at the cell surface using fluorescent peptides. This technique confirmed results from the transcriptional analysis and demonstrated that other MHC proteins, known to restrict SIV-specific responses, are also differentially expressed among distinct leukocyte subsets. Conclusions We assessed MHC class I transcription and expression in human and macaque leukocyte subsets. Until now, it has been difficult to examine MHC class I allele expression due to the similarity of MHC class I sequences. Using two novel techniques we showed that expression varies among distinct leukocyte subsets of macaques but does not vary dramatically in the human cell subsets we examined. These findings suggest pathogen tropism may have a profound impact on the shape and focus of the MHC class I restricted CD8+ T cell response in macaques.
Collapse
Affiliation(s)
- Justin M Greene
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, 53706 Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rosner C, Kruse PH, Hermes M, Otto N, Walter L. Rhesus macaque inhibitory and activating KIR3D interact with Mamu-A-encoded ligands. THE JOURNAL OF IMMUNOLOGY 2011; 186:2156-63. [PMID: 21257962 DOI: 10.4049/jimmunol.1002634] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Specific interactions between killer cell Ig-like receptors (KIRs) and MHC class I ligands have not been described in rhesus macaques despite their importance in biomedical research. Using KIR-Fc fusion proteins, we detected specific interactions for three inhibitory KIRs (3DLW03, 3DL05, 3DL11) and one activating KIR (3DS05). As ligands we identified Macaca mulatta MHC (Mamu)-A1- and Mamu-A3-encoded allotypes, among them Mamu-A1*001:01, which is well known for association with slow progression to AIDS in the rhesus macaque experimental SIV infection model. Interactions with Mamu-B or Mamu-I molecules were not found. KIR3DLW03 and KIR3DL05 differ in their binding sites to their shared ligand Mamu-A1*001:01, with 3DLW03 depending on presence of the α1 domain, whereas 3DL05 depends on both the α1 and α2 domains. Fine-mapping studies revealed that binding of KIR3DLW03 is influenced by presence of the complete Bw4 epitope (positions 77, 80-83), whereas that of KIR3DL05 is mainly influenced by amino acid position 77 of Bw4 and positions 80-83 of Bw6. Our findings allowed the successful prediction of a further ligand of KIR3DL05, Mamu-A1*002:01. These functional differences of rhesus macaque KIR3DL molecules are in line with the known genetic diversification of lineage II KIRs in macaques.
Collapse
Affiliation(s)
- Cornelia Rosner
- Primate Genetics Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Zinöcker S, Wang MY, Gaustad P, Kvalheim G, Rolstad B, Vaage JT. Mycoplasma contamination revisited: mesenchymal stromal cells harboring Mycoplasma hyorhinis potently inhibit lymphocyte proliferation in vitro. PLoS One 2011; 6:e16005. [PMID: 21264307 PMCID: PMC3019172 DOI: 10.1371/journal.pone.0016005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/03/2010] [Indexed: 01/12/2023] Open
Abstract
Background Mesenchymal stromal cells (MSC) have important immunomodulatory effects that can be exploited in the clinical setting, e.g. in patients suffering from graft-versus-host disease after allogeneic stem cell transplantation. In an experimental animal model, cultures of rat T lymphocytes were stimulated in vitro either with the mitogen Concanavalin A or with irradiated allogeneic cells in mixed lymphocyte reactions, the latter to simulate allo-immunogenic activation of transplanted T cells in vivo. This study investigated the inhibitory effects of rat bone marrow-derived MSC subsequently found to be infected with a common mycoplasma species (Mycoplasma hyorhinis) on T cell activation in vitro and experimental graft-versus-host disease in vivo. Principal Findings We found that M. hyorhinis infection increased the anti-proliferative effect of MSC dramatically, as measured by both radiometric and fluorimetric methods. Inhibition could not be explained solely by the well-known ability of mycoplasmas to degrade tritiated thymidine, but likely was the result of rapid dissemination of M. hyorhinis in the lymphocyte culture. Conclusions This study demonstrates the potent inhibitory effect exerted by M. hyorhinis in standard lymphocyte proliferation assays in vitro. MSC are efficient vectors of mycoplasma infection, emphasizing the importance of monitoring cell cultures for contamination.
Collapse
Affiliation(s)
- Severin Zinöcker
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Meng-Yu Wang
- Institute of Tumor Biology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Peter Gaustad
- Institute of Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- Institute of Cellular Therapy, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Bent Rolstad
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - John T. Vaage
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
16
|
Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 2010; 63:73-83. [PMID: 20949353 PMCID: PMC3019358 DOI: 10.1007/s00251-010-0486-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.
Collapse
|
17
|
Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics 2010; 62:601-11. [PMID: 20640416 DOI: 10.1007/s00251-010-0462-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Rhesus macaques (Macaca mulatta) are widely used in developing a strategy for vaccination against human immunodeficiency virus by using simian immunodeficiency virus infection as a model system. Because the genome diversity of major histocompatibility complex (MHC) is well known to control the immune responsiveness to foreign antigens, MHC loci in Indian- and Chinese-origin macaques used in the experiments have been characterized, and it was revealed that the diversity of MHC in macaques was larger than the human MHC. To further characterize the diversity of Mamu-A and Mamu-B loci, we investigated a total of 73 different sequences of Mamu-A, 83 sequences of Mamu-B, and 15 sequences of Mamu-I cDNAs isolated from Burmese-origin macaques. It was found that there were one to five expressing genes in each locus. Among the Mamu-A, Mamu-B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and 8 (53.3%), respectively, were novel, and most of the other known alleles were identical to those reported from Chinese- or Indian-origin macaques, demonstrating a genetic mixture between the geographically distinct populations of present day China and India. In addition, it was found that a Mamu haplotype contained at least two highly transcribed Mamu-A genes, because multiple Mamu-A1 cDNAs were obtained from one haplotype. These findings further revealed the diversity and complexity of MHC locus in the rhesus macaques.
Collapse
|