1
|
Awadi A, Ben Slimen H, Smith S, Makni M, Suchentrunk F. Patterns of evolution in MHC class II DQA and DQB exon 2 genes of Alpine mountain hares, Lepus timidus varronis, and sympatric and parapatric brown hares, L. europaeus, from Switzerland. Immunogenetics 2024; 76:37-50. [PMID: 38114658 DOI: 10.1007/s00251-023-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
In natural populations, hybridization is known to occur between a wide range of species. However, its evolutionary significance is less clear. Genes involved in fighting pathogens are considered excellent candidates for studying adaptive introgression, although both introgression and balancing selection can generate similar patterns of diversity and differentiation. Here, we compared DQA and DQB MHC class II and microsatellite allelic diversity of sympatric and parapatric mountain (Lepus timidus) and brown hare (L. europaeus) populations from Switzerland. We detected higher genetic diversity in brown hares compared to mountain hares at both MHC and microsatellite loci. We consider the observed patterns of microsatellite diversity both for L. europaeus and L. timidus as result of stochastic demographic processes while the pattern of MHC polymorphism of the studied hare populations can be explained by pathogen-driven selection. Rare bidirectional gene flow between both hare species seems to occur specifically for MHC alleles. However, the high number of shared alleles showing similar high frequency in both species suggests that reciprocally exchanged MHC alleles are being maintained via balancing selection. Adaptation to similar pathogen communities can also lead to parallel selection of MHC alleles. Positive selection, recombination and mutations have played different roles in shaping the patterns of MHC allelic diversity in and differentiation between both species. Results for the latter evolutionary forces do not show a better matching between the sympatric populations compared to the parapatric ones, suggesting a minor role of introgression for the observed evolutionary patterns of the studied hare species.
Collapse
Affiliation(s)
- A Awadi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Béja, 9000, Tunisia
| | - H Ben Slimen
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Béja, 9000, Tunisia.
| | - S Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| | - M Makni
- Faculty of Sciences of Tunis, LR01ES05 Biochimie et Biotechnologie, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - F Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| |
Collapse
|
2
|
Haikukutu L, Lyaku JR, Lyimo CM, Eiseb SJ, Makundi RH, Olayemi A, Wilhelm K, Müller-Klein N, Schmid DW, Fleischer R, Sommer S. Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania. Immunogenetics 2023; 75:517-530. [PMID: 37853246 PMCID: PMC10651713 DOI: 10.1007/s00251-023-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.
Collapse
Affiliation(s)
- Lavinia Haikukutu
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania.
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Japhet R Lyaku
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Charles M Lyimo
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Seth J Eiseb
- Department of Environmental Sciences, University of Namibia, Windhoek, Namibia
| | - Rhodes H Makundi
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ayodeji Olayemi
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Nadine Müller-Klein
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Dominik W Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Awadi A, Suchentrunk F, Knauer F, Smith S, Tolesa Z, Ben Slimen H. Spatial diversity of MHC class II DRB exon2 sequences in North African cape hares (Lepus capensis): positive selection and climatic adaptation signals. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci Rep 2021; 11:15771. [PMID: 34349207 PMCID: PMC8338973 DOI: 10.1038/s41598-021-95357-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brown hares (Lepus europaeus Pallas) are able to hybridize with mountain hares (L. timidus Linnaeus) and produce fertile offspring, which results in cross-species gene flow. However, not much is known about the functional significance of this genetic introgression. Using targeted sequencing of candidate loci combined with mtDNA genotyping, we found the ancestral genetic diversity in the Finnish brown hare to be small, likely due to founder effect and range expansion, while gene flow from mountain hares constitutes an important source of functional genetic variability. Some of this variability, such as the alleles of the mountain hare thermogenin (uncoupling protein 1, UCP1), might have adaptive advantage for brown hares, whereas immunity-related MHC alleles are reciprocally exchanged and maintained via balancing selection. Our study offers a rare example where an expanding species can increase its allelic variability through hybridization with a congeneric native species, offering a route to shortcut evolutionary adaptation to the local environmental conditions.
Collapse
|
5
|
Purifying selection shaping the evolution of the Toll-like receptor 2 TIR domain in brown hares (Lepus europaeus) from Europe and the Middle East. Mol Biol Rep 2020; 47:2975-2984. [PMID: 32236892 DOI: 10.1007/s11033-020-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane proteins of the innate immune system, composed of the ectodomain involved in pathogen recognition and the intracellular Toll/interleukin-1 receptor (TIR) domain important for downstream signal transduction. Here, we analyze the genetic variability of TIR nucleotide and amino-acid sequences of the TLR2 gene in 243 brown hares from Europe and the Middle East and tested for the presence of selection signals and spatial structuring. TLR2 TIR domain sequences were PCR amplified and sequenced, while genotyping was performed by phasing. Genetic diversity indices were calculated in DnaSP and Arlequin, while presence of selection signals was tested using MEGA and the Datamonkey web server. The presence of spatial patterns in TIR sequence distribution was tested by spatial Principal Component Analysis (sPCA) in adegenet. A total of 13 haplotypes were revealed with haplotype diversity of 0.424, and nucleotide diversity (π) of 0.00138. Two spatial clusters were revealed: "Anatolia/Middle East" and "Europe". In Anatolia the two most prevalent amino-acid variants, A and B (the latter being the most ancestral) were maintained at similar frequencies; but in Europe a shift in genotype frequencies was observed as well as a higher number of nonsynonymous substitutions giving rise to novel amino-acid protein variants originating from the evolutionarily younger protein variant. Molecular diversity (haplotype and nucleotide diversity) indices were significantly higher in the "Anatolia/Middle East" cluster. A signal of purifying selection was detected acting on the TIR sequences.
Collapse
|
6
|
Awadi A, Ben Slimen H, Smith S, Knauer F, Makni M, Suchentrunk F. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci Rep 2018; 8:11514. [PMID: 30065344 PMCID: PMC6068193 DOI: 10.1038/s41598-018-29657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
In natural populations, allelic diversity of the major histocompatibility complex (MHC) is commonly interpreted as resulting from positive selection in varying spatiotemporal pathogenic landscapes. Composite pathogenic landscape data are, however, rarely available. We studied the spatial distribution of allelic diversity at two MHC class II loci (DQA, DQB) in hares, Lepus capensis, along a steep ecological gradient in North Africa and tested the role of climatic parameters for the spatial distribution of DQA and DQB proteins. Climatic parameters were considered to reflect to some extent pathogenic landscape variation. We investigated historical and contemporary forces that have shaped the variability at both genes, and tested for differential selective pressure across the ecological gradient by comparing allelic variation at MHC and neutral loci. We found positive selection on both MHC loci and significantly decreasing diversity from North to South Tunisia. Our multinomial linear models revealed significant effects of geographical positions that were correlated with mean annual temperature and precipitation on the occurrence of protein variants, but no effects of co-occurring DQA or DQB proteins, respectively. Diversifying selection, recombination, adaptation to local pathogenic landscapes (supposedly reflected by climate parameters) and neutral demographic processes have shaped the observed MHC diversity and differentiation patterns.
Collapse
Affiliation(s)
- Asma Awadi
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Hichem Ben Slimen
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.,Institut Supérieur de Biotechnologie de Béja, University of Jendouba, Avenue Habib Bourguiba Béja 9000, BP. 382, Béja, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Mohamed Makni
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
7
|
Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F. Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. C R Biol 2018; 341:315-324. [PMID: 30032779 DOI: 10.1016/j.crvi.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Toll-like receptors (TLRs) are a major group of proteins that recognize molecular components of infectious agents, known as pathogen associated molecular patterns (PAMPs). The structure of these genes is similar and characterized by the presence of an ectodomain, a signal transmembrane segment and a highly conserved cytoplasmic domain. The latter domain is homologous to the human interleukin-1 receptor (IL1R) and human IL-18 receptor (IL-18R) and designated TIR domain. The latter domain of the TLR genes was suggested to be very conservative and its evolution is driven by purifying selection. Variability and evolution of the TIR sequences of TLR2 gene were studied in three hare populations from Tunisia with different ecological characteristics (NT-North Tunisia with Mediterranean, CT-Central Tunisia with semi-arid, and ST-South Tunisia with arid climate). Sequencing of a 372bp fragment of TIR2 revealed 25 alleles among 110 hares. Twenty variable nucleotide positions were detected, of which 7 were non-synonymous. The highest variability was observed in CT, with 16 polymorphic positions. In ST, only 4 polymorphic nucleotide positions were detected with all diversity values lower than those recorded for the other two populations. By using several approaches, no positive selection was detected. However, evidence of purifying selection was found at two positions. The logistic models of the most common TIR2 protein variant that we run to examine whether its occurrence was affected by climatic variation independent of the geographic sample location suggested only a longitudinal effect. Finally, the mapping of the non-synonymous mutations to the inferred tertiary protein structure showed that they were all localized in the different loop regions. Among all non-synonymous substitutions, three were suggested to be deleterious as evidenced by PROVEAN analysis. The observed patterns of variability characterized by low genetic diversity in ST might suggest that the TIR region was more affected, than other markers, by genetic drift or/and that these patterns were shaped by different selective pressures under different ecological conditions. Notably, this low diversity was not detected by other (putatively neutral) microsatellite markers analysed in the course of other studies. But low diversity was also found for two MHC class II adaptive immune genes. As expected from functionally important regions, the evolution of the TIR2 domain is mainly driven by purifying selection. However, the occurrence of deleterious non-synonymous substitutions might highlight the flexible evolution of the TIR genes and/or their interactions with other proteins.
Collapse
Affiliation(s)
- Asma Awadi
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia.
| | - Hichem Ben Slimen
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia; Institut supérieur de biotechnologie de Béja, Beja 9000, University of Jendouba, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Jonas Kahlen
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Mohamed Makni
- UR Génomique des insectes ravageurs des cultures d'intérêt agronomique (GIRC), Université de Tunis El-Manar, 2092 El Manar, Tunis, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
8
|
Levänen R, Thulin CG, Spong G, Pohjoismäki JLO. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS One 2018; 13:e0191790. [PMID: 29370301 PMCID: PMC5784980 DOI: 10.1371/journal.pone.0191790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
In Fennoscandia, mountain hare (Lepus timidus) and brown hare (Lepus europaeus) hybridize and produce fertile offspring, resulting in gene flow across the species barrier. Analyses of maternally inherited mitochondrial DNA (mtDNA) show that introgression occur frequently, but unavailability of appropriate nuclear DNA markers has made it difficult to evaluate the scale- and significance for the species. The extent of introgression has become important as the brown hare is continuously expanding its range northward, at the apparent expense of the mountain hare, raising concerns about possible competition. We report here, based on analysis of 6833 SNP markers, that the introgression is highly asymmetrical in the direction of gene flow from mountain hare to brown hare, and that the levels of nuclear gene introgression are independent of mtDNA introgression. While it is possible that brown hares obtain locally adapted alleles from the resident mountain hares, the low levels of mountain hare alleles among allopatric brown hares suggest that hybridization is driven by stochastic processes. Interspecific geneflow with the brown hare is unlikely to have major impacts on mountain hare in Fennoscandia, but direct competition may.
Collapse
Affiliation(s)
- Riikka Levänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Carl-Gustaf Thulin
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Spong
- Molecular Ecology Group, Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- * E-mail:
| |
Collapse
|
9
|
Population genetic diversity and geographical differentiation of MHC class II DAB genes in the vulnerable Chinese egret (Egretta eulophotes). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0876-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Xiao J, Zhong H, Liu Z, Yu F, Luo Y, Gan X, Zhou Y. Transcriptome analysis revealed positive selection of immune-related genes in tilapia. FISH & SHELLFISH IMMUNOLOGY 2015; 44:60-65. [PMID: 25659230 DOI: 10.1016/j.fsi.2015.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/17/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
High-throughput sequencing of transcriptome promises a new approach for detecting evolutionary divergence among species. Up to now, the information about evolution of immune genes in cultured fish, especially in tilapias which would aid to understand the molecular basis of immune phenotypic differentiation is still lack. Thus, in the present study, we used high-throughput sequencing to obtain large amount of gene sequences in blue tilapia and characterized the diversity of orthologs among Nile tilapia, blue tilapia and zebrafish. A total of 52,424,506 raw reads, representing 31,404 unigenes were obtained from blue tilapia cDNA library of mixed tissues, including brain, pituitary, gill, heart, liver, spleen, kidney, intestine, muscle, testis and ovary. Based on Ks value, we calculated that the divergence time between Nile tilapia and blue tilapia is 2.93 million years ago. And the tilapias are both apart from zebrafish in 197 million years ago. Furthermore, the positive selected genes were identified by calculating of Ka/Ks ratio. Several immune-related genes were identified as positively selected genes, such as Notch2 and nfatc3b. Considering that these genes play crucial role in immune regulating function, the immune system genes met a great variation under environment selection in tilapias which suggests fast evolution in immune system of cultured tilapias.
Collapse
Affiliation(s)
- Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Zhen Liu
- Department of Biotechnology and Environmental Science, Changsha University, Changsha 410003, China
| | - Fan Yu
- Key Laboratory for Genetic Breeding of Aquatic Animals, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Xi Gan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China; Department of Biotechnology and Environmental Science, Changsha University, Changsha 410003, China.
| |
Collapse
|
11
|
Scherman K, Råberg L, Westerdahl H. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus). J Mol Evol 2014; 78:293-305. [PMID: 24748547 DOI: 10.1007/s00239-014-9618-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.
Collapse
Affiliation(s)
- Kristin Scherman
- Department of Biology, MEMEG, Lund University, Sölvegatan 37, 223 62, Lund, Sweden,
| | | | | |
Collapse
|
12
|
Koutsogiannouli EA, Moutou KA, Stamatis C, Walter L, Mamuris Z. Genetic variation in the major histocompatibility complex of the European brown hare (Lepus europaeus) across distinct phylogeographic areas. Immunogenetics 2014; 66:379-92. [DOI: 10.1007/s00251-014-0772-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
13
|
Iacovakis C, Mamuris Z, Moutou KA, Touloudi A, Hammer AS, Valiakos G, Giannoulis T, Stamatis C, Spyrou V, Athanasiou LV, Kantere M, Asferg T, Giannakopoulos A, Salomonsen CM, Bogdanos D, Birtsas P, Petrovska L, Hannant D, Billinis C. Polarisation of major histocompatibility complex II host genotype with pathogenesis of European Brown Hare syndrome virus. PLoS One 2013; 8:e74360. [PMID: 24069299 PMCID: PMC3778001 DOI: 10.1371/journal.pone.0074360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022] Open
Abstract
A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (Ho = 0.1180) was lower than expected (He = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis and MHC class II genotype within the European brown hare in Denmark.
Collapse
Affiliation(s)
- Christos Iacovakis
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Katerina A. Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonia Touloudi
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Anne Sofie Hammer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - George Valiakos
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Themis Giannoulis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Costas Stamatis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Vassiliki Spyrou
- Department of Animal Production, Technological Education Institute of Larissa, Larissa, Greece
| | - Labrini V. Athanasiou
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Maria Kantere
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Tommy Asferg
- Institute for Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Charlotte M. Salomonsen
- Section for Fur Animal and Wildlife Diseases, National Veterinary Institute, Technical University of Denmark, Aarhus, Denmark
| | - Dimitrios Bogdanos
- Department of Medicine, University of Thessaly, Larissa, Greece
- Institute of Liver Studies, King’s College London, London, United Kingdom
| | - Periklis Birtsas
- Department of Forestry and Natural Environment Administration, Technological Education Institute of Larissa, Karditsa, Greece
| | - Liljana Petrovska
- Department of Bacteriology, Veterinary Laboratories Agency, Weybridge, United Kingdom
| | - Duncan Hannant
- School of Veterinary Medicine & Science, University of Nottingham, Nottingham, United Kingdom
| | - Charalambos Billinis
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
- * E-mail:
| |
Collapse
|
14
|
Arbanasić H, Huber Đ, Kusak J, Gomerčić T, Hrenović J, Galov A. Extensive polymorphism and evidence of selection pressure on major histocompatibility complex DLA-DRB1, DQA1 and DQB1 class II genes in Croatian grey wolves. ACTA ACUST UNITED AC 2012; 81:19-27. [PMID: 23134500 DOI: 10.1111/tan.12029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/04/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for measuring fitness-related genetic variation in wildlife populations. Because of human persecution and habitat fragmentation, the grey wolf has become extinct from a large part of Western and Central Europe, and remaining populations have become isolated. In Croatia, the grey wolf population, part of the Dinaric-Balkan population, shrank nearly to extinction during the 20th century, and is now legally protected. Using the cloning-sequencing method, we investigated the genetic diversity and evolutionary history of exon 2 of MHC class II DLA-DRB1, DQA1 and DQB1 genes in 77 individuals. We identified 13 DRB1, 7 DQA1 and 11 DQB1 highly divergent alleles, and 13 DLA-DRB1/DQA1/DQB1 haplotypes. Selection analysis comparing the relative rates of non-synonymous to synonymous mutations (d(N)/d(S)) showed evidence of positive selection pressure acting on all three loci. Trans-species polymorphism was found, suggesting the existence of balancing selection. Evolutionary codon models detected considerable difference between alpha and beta chain gene selection patterns: DRB1 and DQB1 appeared to be under stronger selection pressure, while DQA1 showed signs of moderate selection. Our results suggest that, despite the recent contraction of the Croatian wolf population, genetic variability in selectively maintained immune genes has been preserved.
Collapse
Affiliation(s)
- H Arbanasić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|