1
|
He K, Zhu Y, Yang SC, Ye Q, Fang SG, Wan QH. Major histocompatibility complex genomic investigation of endangered Chinese alligator provides insights into the evolution of tetrapod major histocompatibility complex and survival of critically bottlenecked species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1078058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BackgroundThe major histocompatibility complex (MHC) gene family, a vital immune gene family in vertebrates, helps animals defend against pathogens. The polymorphism of MHC genes is important for a species and is considered to be caused by the numerous alleles of MHC antigen-presenting genes. However, the mechanism of this process is unclear due to the lack of data on the MHC structure. The evolutionary trajectories of the tetrapod MHC are also unclear because of insufficient studies on the reptile MHC architecture. Here, we studied the Chinese alligator (Alligator sinensis), which experienced a population bottleneck, but the population increased rapidly in the past 30 years and is proposed to have a unique MHC system to face pathogenic challenges.ResultsWe successfully constructed a 2 Mb MHC region using bacterial artificial chromosome (BAC) library and genome data of the Chinese alligator and checked the antigen-presenting genes using transcriptome data and the rapid amplification of cDNA ends (RACE) technique. The MHC architecture reported here uncovers adjacent Class I and Class II subregions and a unique CD1 subregion. This newly added information suggested that the Class I-II structure pattern was more ancient in tetrapods and helped reconstruct the evolution of the MHC region architecture. We also found multiple groups of MHC class I (MHC-I) (12 duplicated loci, belonging to three groups, two of which were novel) and MHC class II (MHC-II) (11 duplicated loci, belonging to two groups) inside the 2 Mb MHC region, and there were three more duplicated MHC-I loci outside it. These highly duplicated antigen-presenting loci had differences in expression, amino acid length of antigen-presenting exons, and splice signal of exon and intron, which together promoted the polymorphism of duplicated genes. Although the MHC antigen-presenting genes were identified as monomorphic or oligomorphic in our previous population study, the loci with high copy numbers and many differences can make up for this loss, presenting another mechanism for polymorphism in antigen presentation. These MHC-I and MHC-IIB loci with low polymorphism for each locus, but high numbers in all, may also contribute to MHC antigen-presenting binding variability in a population.ConclusionTo summarize, the fine MHC region architecture of reptiles presented in this study completes the evolutionary trajectories of the MHC structure in tetrapods, and these distinctive MHC gene groups in the Chinese alligator may have helped this species to expand rapidly in the past recent years.
Collapse
|
2
|
Lee C, Moroldo M, Perdomo-Sabogal A, Mach N, Marthey S, Lecardonnel J, Wahlberg P, Chong AY, Estellé J, Ho SYW, Rogel-Gaillard C, Gongora J. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 2017; 70:401-417. [PMID: 29256177 DOI: 10.1007/s00251-017-1048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022]
Abstract
The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.
Collapse
Affiliation(s)
- Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Marco Moroldo
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alvaro Perdomo-Sabogal
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.,Institute of Animal Science (460i), Department of Bioinformatics, University of Hohenheim, Stuttgart, Germany
| | - Núria Mach
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sylvain Marthey
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jérôme Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Per Wahlberg
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Amanda Y Chong
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.,Earlham Institute, Norwich Research Park, Norwich, UK
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Y W Ho
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | | | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Egernia stokesii (gidgee skink) MHC I positively selected sites lack concordance with HLA peptide binding regions. Immunogenetics 2016; 69:49-61. [PMID: 27517292 DOI: 10.1007/s00251-016-0947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play an important role in vertebrate disease resistance, kin recognition and mate choice. Mammalian MHC is the most widely characterised of all vertebrates, and attention is often given to the peptide binding regions of the MHC because they are presumed to be under stronger selection than non-peptide binding regions. For vertebrates where the MHC is less well understood, researchers commonly use the amino acid positions of the peptide binding regions of the human leukocyte antigen (HLA) to infer the peptide binding regions within the MHC sequences of their taxon of interest. However, positively selected sites within MHC have been reported to lack correspondence with the HLA in fish, frogs, birds and reptiles including squamates. Despite squamate diversity, the MHC has been characterised in few snakes and lizards. The Egernia group of scincid lizards is appropriate for investigating mechanisms generating MHC variation, as their inclusion will add a new lineage (i.e. Scincidae) to studies of selection on the MHC. We aimed to identify positively selected sites within the MHC of Egernia stokesii and then determine if these sites corresponded with the peptide binding regions of the HLA. Six positively selected sites were identified within E. stokesii MHC I, only two were homologous with the HLA. E. stokesii positively selected sites corresponded more closely to non-lizard than other lizard taxa. The characterisation of the MHC of more intermediate taxa within the squamate order is necessary to understand the evolution of the MHC across all vertebrates.
Collapse
|
4
|
Adaptive and neutral genetic differentiation among Scottish and endangered Irish red grouse (Lagopus lagopus scotica). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0810-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
6
|
Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus. G3-GENES GENOMES GENETICS 2015; 5:1439-51. [PMID: 25953959 PMCID: PMC4502378 DOI: 10.1534/g3.115.017467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general.
Collapse
|
7
|
454 screening of individual MHC variation in an endemic island passerine. Immunogenetics 2014; 67:149-62. [PMID: 25515684 PMCID: PMC4325181 DOI: 10.1007/s00251-014-0822-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 11/03/2022]
Abstract
Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.
Collapse
|
8
|
Jaratlerdsiri W, Deakin J, Godinez RM, Shan X, Peterson DG, Marthey S, Lyons E, McCarthy FM, Isberg SR, Higgins DP, Chong AY, John JS, Glenn TC, Ray DA, Gongora J. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC. PLoS One 2014; 9:e114631. [PMID: 25503521 PMCID: PMC4263668 DOI: 10.1371/journal.pone.0114631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.
Collapse
Affiliation(s)
- Weerachai Jaratlerdsiri
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Janine Deakin
- Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Ricardo M. Godinez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
- Department of Genetics, Harvard Medical School, 77 Louis Pasteur Ave., Boston, Massachusetts 02115, United States of America
| | - Xueyan Shan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39762, United States of America
| | - Daniel G. Peterson
- Institute for Genomics, Biocomputing and Biotechnology (IGBB), Mississippi State University, Mississippi State, Mississippi 39762, United States of America
| | - Sylvain Marthey
- Animal Genetics and Integrative Biology, INRA, UMR 1313 Jouy-en-Josas 78352, France
| | - Eric Lyons
- School of Plant Science, University of Arizona, Tucson, Arizona 85721, United States of America
| | - Fiona M. McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, United States of America
| | - Sally R. Isberg
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
- Center for Crocodile Research, P.O. Box 329, Noonamah, Northern Territory 0837, Australia
| | - Damien P. Higgins
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amanda Y. Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John St John
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
| | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, United States of America
| | - David A. Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39762, United States of America
- Institute for Genomics, Biocomputing and Biotechnology (IGBB), Mississippi State University, Mississippi State, Mississippi 39762, United States of America
| | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Dearborn DC, Gager AB, Gilmour ME, McArthur AG, Hinerfeld DA, Mauck RA. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach’s storm-petrel. Immunogenetics 2014; 67:111-23. [DOI: 10.1007/s00251-014-0813-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
|
10
|
Jaratlerdsiri W, Isberg SR, Higgins DP, Miles LG, Gongora J. Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order Crocodylia. PLoS One 2014; 9:e87534. [PMID: 24503938 PMCID: PMC3913596 DOI: 10.1371/journal.pone.0087534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85-90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia.
Collapse
Affiliation(s)
| | - Sally R. Isberg
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
- Centre for Crocodile Research, Noonamah, Northern Territory, Australia
| | - Damien P. Higgins
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lee G. Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|