1
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals (Basel) 2022; 12:ani12223163. [PMID: 36428390 PMCID: PMC9686681 DOI: 10.3390/ani12223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Masanori Shimizu
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
2
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Tanaka J, Hayashi N, Kitazawa H, Uenishi H. NOD2 Genotypes Affect the Symptoms and Mortality in the Porcine Circovirus 2-Spreading Pig Population. Genes (Basel) 2021; 12:genes12091424. [PMID: 34573406 PMCID: PMC8469532 DOI: 10.3390/genes12091424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
The nucleotide oligomerization domain (NOD)-like receptor 2 (NOD2) is an intracellular pattern recognition receptor that detects components of peptidoglycans from bacterial cell walls. NOD2 regulates bowel microorganisms, provides resistance against infections such as diarrhea, and reduces the risk of inflammatory bowel diseases in humans and mice. We previously demonstrated that a specific porcine NOD2 polymorphism (NOD2-2197A > C) augments the recognition of peptidoglycan components. In this study, the relationships between porcine NOD2-2197A/C genotypes affecting molecular functions and symptoms in a porcine circovirus 2b (PCV2b)-spreading Duroc pig population were investigated. The NOD2 allele (NOD2-2197A) with reduced recognition of the peptidoglycan components augmented the mortality of pigs at the growing stage in the PCV2b-spreading population. Comparison of NOD2 allele frequencies in the piglets before and after invasion of PCV2b indicated that the ratio of NOD2-2197A decreased in the population after the PCV2b epidemic. This data indicated that functional differences caused by NOD2-2197 polymorphisms have a marked impact on pig health and livestock productivity. We suggest that NOD2-2197CC is a PCV2 disease resistant polymorphism, which is useful for selective breeding by reducing mortality and increasing productivity.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Noboru Hayashi
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
3
|
Li W, Shi L, Zhuang Z, Wu H, Lian M, Chen Y, Li L, Ge W, Jin Q, Zhang Q, Zhao Y, Liu Z, Ouyang Z, Ye Y, Li Y, Wang H, Liao Y, Quan L, Xiao L, Lai L, Meng G, Wang K. Engineered Pigs Carrying a Gain-of-Function NLRP3 Homozygous Mutation Can Survive to Adulthood and Accurately Recapitulate Human Systemic Spontaneous Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2532-2544. [PMID: 32958688 DOI: 10.4049/jimmunol.1901468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/23/2020] [Indexed: 12/30/2022]
Abstract
The NLRP3 inflammasome is associated with a variety of human diseases, including cryopyrin-associated periodic syndrome (CAPS). CAPS is a dominantly inherited disease with NLRP3 missense mutations. Currently, most studies on the NLRP3-inflammasome have been performed with mice, but the activation patterns and the signaling pathways of the mouse NLRP3 inflammasome are not always identical with those in humans. The NLRP3 inflammasome activation in pigs is similar to that in humans. Therefore, pigs with precise NLRP3-point mutations may model human CAPS more accurately. In this study, an NLRP3 gain-of-function pig model carrying a homozygous R259W mutation was generated by combining CRISPR/Cpf1-mediated somatic cell genome editing with nuclear transfer. The newborn NLRP3 R259W homozygous piglets showed early mortality, poor growth, and spontaneous systemic inflammation symptoms, including skin lesion, joint inflammation, severe contracture, and inflammation-mediated multiorgan failure. Severe myocardial fibrosis was also observed. The tissues of inflamed skins and several organs showed significantly increased expressions of NLRP3, Caspase-1, and inflammation-associated cytokines and factors (i.e., IL-1β, TNF-α, IL-6, and IL-17). Notably, approximately half of the homozygous piglets grew up to adulthood and even gave birth to offspring. Although the F1 heterozygous piglets showed improved survival rate and normal weight gain, 39.1% (nine out of 23) of the piglets died early and exhibited spontaneous systemic inflammation symptoms. In addition, similar to homozygotes, adult heterozygotes showed increased delayed hypersensitivity response. Thus, the NLRP3 R259W pigs are similar to human CAPS and can serve as an ideal animal model to bridge the gap between rodents and humans.
Collapse
Affiliation(s)
- Wenjing Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Lei Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Meng Lian
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yihui Chen
- University of Chinese Academy of Sciences, Beijing 100039, China.,The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Lei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Yingying Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Lei Xiao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.,College of Medicine, Zhejiang University, Huangzhou 310058, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Guangxun Meng
- University of Chinese Academy of Sciences, Beijing 100039, China; .,The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| |
Collapse
|
5
|
Vrentas CE, Schaut RG, Boggiatto PM, Olsen SC, Sutterwala FS, Moayeri M. Inflammasomes in livestock and wildlife: Insights into the intersection of pathogens and natural host species. Vet Immunol Immunopathol 2018; 201:49-56. [PMID: 29914682 DOI: 10.1016/j.vetimm.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
Abstract
The inflammasome serves as a mechanism by which the body senses damage or danger. These multiprotein complexes form in the cytosol of myeloid, epithelial and potentially other cell types to drive caspase-1 cleavage and the secretion of the pro-inflammatory cytokines IL-1β and IL-18. Different types of inflammasomes, centered on (and named after) their cytosolic NLRs, respond to signals from bacteria, fungi, and viruses, as well as "sterile inflammatory" triggers. Despite the large body of research accumulated on rodent and human inflammasomes over the past 15 years, only recently have studies expanded to consider the role of inflammasomes in veterinary and wildlife species. Due to the key role of inflammasomes in mediating inflammatory responses observed in humans and rodents, characterization of the similarities and differences between humans/rodents and veterinary species is required to identify genetic and evolutionary influences on disease responses and to develop therapeutic candidates for use in veterinary inflammatory syndromes. Here, we summarize recent findings on inflammasomes in swine, cattle, dogs, bats, small ruminants, and birds. We describe current gaps in our knowledge and highlight promising areas for future research.
Collapse
Affiliation(s)
- Catherine E Vrentas
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Ave., Ames, IA, 50010, USA.
| | - Robert G Schaut
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Ave., Ames, IA, 50010, USA
| | - Paola M Boggiatto
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Ave., Ames, IA, 50010, USA
| | - Steven C Olsen
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Ave., Ames, IA, 50010, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD, 20892, USA
| |
Collapse
|