1
|
Celis-Giraldo C, Suárez CF, Agudelo W, Ibarrola N, Degano R, Díaz J, Manzano-Román R, Patarroyo MA. Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules. BIOLOGY 2024; 13:832. [PMID: 39452141 PMCID: PMC11505383 DOI: 10.3390/biology13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
- PhD Programme in Tropical Health and Development, Doctoral School “Studii Salamantini”, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos F. Suárez
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - William Agudelo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Rosa Degano
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Jaime Díaz
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel A. Patarroyo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
2
|
Luo T, Xin C, Liu H, Li C, Chen H, Xia C, Gao C. Potential SLA Hp-4.0 haplotype-restricted CTL epitopes identified from the membrane protein of PRRSV induce cell immune responses. Front Microbiol 2024; 15:1404558. [PMID: 38841061 PMCID: PMC11150780 DOI: 10.3389/fmicb.2024.1404558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Swine leukocyte antigen (SLA) class I molecule-restricted T-cell epitopes, which induce cytotoxic T lymphocyte (CTL) responses, play a critical role in the clearance of porcine reproductive and respiratory syndrome virus (PRRSV) and the development of efficient protective vaccines. The SLA-1*04:01:01, SLA-2*04:01, and SLA-3*04:01 alleles, assigned the Hp-4.0 haplotype, are highly prevalent and usually present in all pig breeds. However, the SLA Hp-4.0 haplotype-restricted CTL epitopes in the structural membrane (M) protein of PRRSV are still unknown. In this study, we predicted 27 possible 9-mer epitope peptides in M protein with high binding scores for SLA-1*04:01:01 using CTL epitope prediction tools. In total, 45 SLA class I complexes, comprising the predicted peptide, extracellular region of the SLA-I molecules, and β2-microglobulin, were constructed in vitro to detect the specific binding of these peptides to SLA-1*04:01:01 (27 complexes), SLA-2*04:01 (9 complexes), and SLA-3*04:01 (9 complexes), respectively. Our results showed that the M27 (T91WKFITSRC), M39 (N130HAFVVRRP), and M49 (G158RKAVKQGV) peptides bind specifically to SLA-1*04:01:01, SLA-2*04:01, and SLA-3*04:01, respectively. Subsequently, using peripheral blood mononuclear cells (PBMCs) isolated from the homozygous Hp-4.0 and Hp-26.0 haplotype piglets vaccinated with commercial PRRSV HuN4-F112 strain, we determined the capacities of these 27 potential peptides to stimulate their proliferation with a Cell Counting Kit-8 and their secretion and expression of interferon gamma (IFN-γ) with an ELISpot assay and real-time qPCR, respectively. The immunological activities of M27, M39, and M49 were therefore confirmed when they efficiently induced PBMC proliferation and IFN-γ secretion in PBMCs from piglets with the prevalent SLA Hp-4.0 haplotype. The amino acid sequence alignment revealed that M27, M39, and M49 are highly conserved among 248 genotype II PRRSV strains collected between 1998 and 2019. These findings contribute to the understanding of the mechanisms of cell-mediated immune responses to PRRSV. Our study also provides a novel strategy for identifying and confirming potential SLA haplotype-restricted CTL epitopes that could be used to develop novel peptide-based vaccines against swine diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
3
|
Hammer SE, Duckova T, Gociman M, Groiss S, Pernold CPS, Hacker K, Kasper L, Sprung J, Stadler M, Jensen AE, Saalmüller A, Wenzel N, Figueiredo C. Comparative analysis of swine leukocyte antigen gene diversity in Göttingen Minipigs. Front Immunol 2024; 15:1360022. [PMID: 38469309 PMCID: PMC10925748 DOI: 10.3389/fimmu.2024.1360022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.
Collapse
Affiliation(s)
- Sabine E. Hammer
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tereza Duckova
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monica Gociman
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sandra Groiss
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Clara P. S. Pernold
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karolin Hacker
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | | | - Julia Sprung
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Armin Saalmüller
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Immunosuppressive regimens in porcine transplantation models. Transplant Rev (Orlando) 2022; 36:100725. [PMID: 36054957 DOI: 10.1016/j.trre.2022.100725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
Pigs, or Sus scrofa domestica, are commonly used animal models in translational transplantation research due to their anatomical, physiological, and immunological similarities to humans. In solid organ transplantation studies, immunosuppressive medications may be administered to pigs to prevent rejection. We provide an overview of the immunosuppressive regimens used in allogeneic solid organ transplantation in pigs, including heart, lung, kidney, bowel and cotransplanted organs and focus on the use of tacrolimus, mycophenolate mofetil, and corticosteroids.
Collapse
|
5
|
Hammer SE, Duckova T, Groiss S, Stadler M, Jensen-Waern M, Golde WT, Gimsa U, Saalmueller A. Comparative analysis of swine leukocyte antigen gene diversity in European farmed pigs. Anim Genet 2021; 52:523-531. [PMID: 34028065 PMCID: PMC8362188 DOI: 10.1111/age.13090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
In Europe, swine represent economically important farm animals and furthermore have become a preferred preclinical large animal model for biomedical studies, transplantation and regenerative medicine research. The need for typing of the swine leukocyte antigen (SLA) is increasing with the expanded use of pigs as models for human diseases and organ‐transplantation experiments and their use in infection studies and for design of veterinary vaccines. In this study, we characterised the SLA class I (SLA‐1, SLA‐2, SLA‐3) and class II (DRB1, DQB1, DQA) genes of 549 farmed pigs representing nine commercial pig lines by low‐resolution (Lr) SLA haplotyping. In total, 50 class I and 37 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotypes Lr‐04.0 (SLA‐1*04XX‐SLA‐3*04XX(04:04)‐SLA‐2*04XX) and Lr‐32.0 (SLA‐1*07XX‐SLA‐3*04XX(04:04)‐SLA‐2*02XX) occurred at frequencies of 11.02 and 8.20% respectively. For SLA class II, the most prevalent haplotypes Lr‐0.15b (DRB1*04XX(04:05/04:06)‐DQB1*02XX(02:02)‐DQA*02XX) and Lr‐0.12 (DRB1*06XX‐DQB1*07XX‐DQA*01XX) occurred at frequencies of 14.37 and 12.46% respectively. Meanwhile, our laboratory has contributed to several vaccine correlation studies (e.g. Porcine Reproductive and Respiratory Syndrome Virus, Classical Swine Fever Virus, Foot‐and‐Mouth Disease Virus and Swine Influenza A Virus) elucidating the immunodominance in the T‐cell response with antigen specificity dependent on certain SLA‐I and SLA‐II haplotypes. Moreover, these SLA–immune response correlations could facilitate tailored vaccine development, as SLA‐I Lr‐04.0 and Lr‐32.0 as well as SLA‐II Lr‐0.15b and Lr‐0.12 are highly abundant haplotypes in European farmed pigs.
Collapse
Affiliation(s)
- S E Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - T Duckova
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - S Groiss
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - M Stadler
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| | - M Jensen-Waern
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7054, Uppsala, 750 07, Sweden
| | - W T Golde
- Moredun Research Institute, Edinburgh, EH26 OPZ, UK
| | - U Gimsa
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196, Germany
| | - A Saalmueller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210, Austria
| |
Collapse
|
6
|
Techakriengkrai N, Nedumpun T, Golde WT, Suradhat S. Diversity of the Swine Leukocyte Antigen Class I and II in Commercial Pig Populations. Front Vet Sci 2021; 8:637682. [PMID: 33996967 PMCID: PMC8121083 DOI: 10.3389/fvets.2021.637682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Among swine genetic markers, the highly polymorphic swine leukocyte antigen (SLA) is one of the key determinants, associated with not only immune responses but also reproductive performance and meat quality. The objective of this study was to characterize the SLA class I and II diversities in the commercial pig populations. In this study, a total number of 158 pigs (126 gilts and 32 boars) were randomly selected from different breeding herds of five major pig-producing companies, which covered ~70% of Thai swine production. The results indicate that a moderate level of SLA diversity was maintained in the Thai swine population, despite the performance-oriented breeding scheme. The highly common SLA class I alleles were SLA-1*08:XX, SLA-2*02:XX, and SLA-3*04:XX at a combined frequency of 30.1, 18.4, and 34.5%, respectively, whereas DRB1*04:XX, DQB1*02:XX and DQA*02:XX were the common class II alleles at 22.8, 33.3, and 38.6%, respectively. The haplotype Lr-32.0 (SLA-1*07:XX, SLA-2*02:XX, and SLA-3*04:XX) and Lr-0.23 (DRB1*10:XX, DQB1*06:XX, DQA* 01:XX) was the most common SLA class I and II haplotype, at 15.5 and 14.6%, respectively. Common class I and II haplotypes were also observed, which Lr-22.15 was the most predominant at 11.1%, followed by Lr-32.12 and Lr-4.2 at 10.8 and 7.9%, respectively. To our knowledge, this is the first report of SLA class I and II diversities in the commercial pigs in Southeast Asia. The information of the common SLA allele(s) in the population could facilitate swine genetic improvement and future vaccine design.
Collapse
Affiliation(s)
- Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogens Research Unit, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Teerawut Nedumpun
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - William T Golde
- Department of Vaccines and Diagnostics, Moredun Research Institute, Penicuik, United Kingdom
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
7
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
8
|
de León P, Cañas-Arranz R, Saez Y, Forner M, Defaus S, Cuadra D, Bustos MJ, Torres E, Andreu D, Blanco E, Sobrino F, Hammer SE. Association of Porcine Swine Leukocyte Antigen (SLA) Haplotypes with B- and T-Cell Immune Response to Foot-and-Mouth Disease Virus (FMDV) Peptides. Vaccines (Basel) 2020; 8:vaccines8030513. [PMID: 32911818 PMCID: PMC7563261 DOI: 10.3390/vaccines8030513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/15/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited consistent levels of neutralizing antibodies and IFN-γ-producing cells in pigs. To address the contribution of the highly polymorphic nature of the porcine MHC (SLA, swine leukocyte antigen) on the immunogenicity of B2T dendrimers, low-resolution (Lr) haplotyping was performed. We looked for possible correlations between particular Lr haplotypes with neutralizing antibody and T-cell responses induced by B2T peptides. In this study, 63 pigs immunized with B2T dendrimers and 10 non-immunized (control) animals are analyzed. The results reveal a robust significant correlation between SLA class-II Lr haplotypes and the T-cell response. Similar correlations of T-cell response with SLA class-I Lr haplotypes, and between B-cell antibody response and SLA class-I and SLA class-II Lr haplotypes, were only found when the sample was reduced to animals with Lr haplotypes represented more than once. These results support the contribution of SLA class-II restricted T-cells to the magnitude of the T-cell response and to the antibody response evoked by the B2T dendrimers, being of potential value for peptide vaccine design against FMDV.
Collapse
Affiliation(s)
- Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Yago Saez
- Computer Science Department, Universidad Carlos III of Madrid, Leganés, 28911 Madrid, Spain;
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Dolores Cuadra
- Computer Science Department, Universidad Rey Juan Carlos, 28933 Móstoles, Spain;
| | - María J. Bustos
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Elisa Torres
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
- Correspondence: (F.S.); (S.E.H.); Tel.: +34-9119-64493 (F.S.); +43-1-25077-2754 (S.E.H.)
| | - Sabine E. Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
- Correspondence: (F.S.); (S.E.H.); Tel.: +34-9119-64493 (F.S.); +43-1-25077-2754 (S.E.H.)
| |
Collapse
|
9
|
Hammer SE, Ho CS, Ando A, Rogel-Gaillard C, Charles M, Tector M, Tector AJ, Lunney JK. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu Rev Anim Biosci 2019; 8:171-198. [PMID: 31846353 DOI: 10.1146/annurev-animal-020518-115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.
Collapse
Affiliation(s)
- Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois 60143, USA
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | | | - Mathieu Charles
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Makana Therapeutics, Wilmington, Delaware 19801, USA
| | - A Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Department of Surgery, University of Miami, Miami, Florida 33136, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
10
|
Matczyńska D, Sypniewski D, Gałka S, Sołtysik D, Loch T, Nowak E, Smorąg Z, Bednarek I. Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research. J Vet Sci 2018; 19:384-392. [PMID: 29366300 PMCID: PMC5974520 DOI: 10.4142/jvs.2018.19.3.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/29/2017] [Accepted: 01/20/2018] [Indexed: 11/26/2022] Open
Abstract
Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety.
Collapse
Affiliation(s)
- Daria Matczyńska
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Daniel Sypniewski
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Sabina Gałka
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dagna Sołtysik
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Tomasz Loch
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Ewa Nowak
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Zdzisław Smorąg
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
11
|
Gao C, Quan J, Jiang X, Li C, Lu X, Chen H. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs. Front Immunol 2017; 8:282. [PMID: 28360911 PMCID: PMC5350106 DOI: 10.3389/fimmu.2017.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in pigs, screening potential T-cell epitopes, and further developing the more effective vaccines.
Collapse
Affiliation(s)
- Caixia Gao
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Jinqiang Quan
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xinjie Jiang
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Changwen Li
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xiaoye Lu
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Hongyan Chen
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| |
Collapse
|