1
|
Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021; 35:1167-1177. [PMID: 33710028 PMCID: PMC8183476 DOI: 10.1097/qad.0000000000002864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) has been linked with the generation of virus-specific memory CD8+ T cells following acute infection with HIV-1 and reduced exhaustion of CD8+ T cells. IL-21 has also been implicated in the promotion of CD8+ T-cell effector functions during viral infection. Little is known about the expression of interleukin-21 receptor (IL-21R) during HIV-1 infection or its role in HIV-1-specific CD8+ T-cell maintenance and subsequent viral control. METHODS We compared levels of IL-21R expression on total and memory subsets of CD8+ T cells from HIV-1-negative and HIV-1-positive donors. We also measured IL-21R on antigen-specific CD8+ T cells in volunteers who were positive for HIV-1 and had cytomegalovirus-responding T cells. Finally, we quantified plasma IL-21 in treatment-naive HIV-1-positive individuals and compared this with IL-21R expression. RESULTS IL-21R expression was significantly higher on CD8+ T cells (P = 0.0256), and on central memory (P = 0.0055) and effector memory (P = 0.0487) CD8+ T-cell subsets from HIV-1-positive individuals relative to HIV-1-negative individuals. For those infected with HIV-1, the levels of IL-21R expression on HIV-1-specific CD8+ T cells correlated significantly with visit viral load (r = 0.6667, P = 0.0152, n = 13) and inversely correlated with plasma IL-21 (r = -0.6273, P = 0.0440, n = 11). Lastly, CD8+ T cells from individuals with lower set point viral load who demonstrated better viral control had the lowest levels of IL-21R expression and highest levels of plasma IL-21. CONCLUSION Our data demonstrates significant associations between IL-21R expression on peripheral CD8+ T cells and viral load, as well as disease trajectory. This suggests that the IL-21 receptor could be a novel marker of CD8+ T-cell dysfunction during HIV-1 infection.
Collapse
Affiliation(s)
- Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhou MJ, Huang HH, Song JW, Tu B, Fan X, Li J, Jin JH, Cao WJ, Hu W, Yang T, Zhou CB, Yuan JH, Fan J, Zhang JY, Jiao YM, Xu RN, Zhen C, Shi M, Zhang C, Wang FS. Compromised long-lived memory CD8 + T cells are associated with reduced IL-7 responsiveness in HIV-infected immunological nonresponders. Eur J Immunol 2021; 51:2027-2039. [PMID: 33974710 DOI: 10.1002/eji.202149203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Indexed: 11/07/2022]
Abstract
Immune deficiency is one of the hallmarks of HIV infection and a major cause of adverse outcomes in people living with HIV (PLWH). Long-lived memory CD8+ T cells (LLMCs) are essential executors of long-term protective immunity; however, the generation and maintenance of LLMCs during chronic HIV infection are not well understood. In the present study, we analyzed circulating LLMCs in healthy controls (HCs) and PLWH with different disease statuses, including treatment naïve patients (TNs), complete responders (CRs), and immunological nonresponders (INRs). We found that both TNs and INRs showed severely compromised LLMCs compared with HCs and CRs, respectively. The decrease of LLMCs in TNs correlated positively with the reduction of their precursors, namely memory precursor effector T cells (MPECs), which might be associated with elevated pro-inflammatory cytokines. Strikingly, INRs showed an accumulation of MPECs, which exhibited diminished responsiveness to interleukin 7 (IL-7), thereby indicating abrogated differentiation into LLMCs. Moreover, in vitro studies showed that treatment with dexamethasone could improve the IL7-phosphorylated (p)-signal transducer and activator of transcription (STAT5) response by upregulating the expression of the interleukin 7 receptor (IL-7Rα) on MPECs in INRs. These findings provide insights that will encourage the development of novel therapeutics to improve immune function in PLWH.
Collapse
Affiliation(s)
- Ming-Ju Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Bengbu Medical College, Bengbu, China
| | - Wei Hu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
- Bengbu Medical College, Bengbu, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
3
|
Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood 2020; 135:1685-1695. [PMID: 32315407 DOI: 10.1182/blood.2019003880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma (T-LBL) are aggressive hematological malignancies that are currently treated with high-dose chemotherapy. Over the last several years, the search toward novel and less-toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell-intrinsic properties of the tumor cell. However, non-cell-autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous interleukin 7 (IL7) can increase the expression of the oncogenic kinase proviral integration site for Moloney-murine leukemia 1 (PIM1) in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared with bulk nontreated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL patient-derived xenograft (PDX) cells, ultimately resulting in non-cell-autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7-responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy.
Collapse
|
4
|
Meyer LK, Huang BJ, Delgado-Martin C, Roy RP, Hechmer A, Wandler AM, Vincent TL, Fortina P, Olshen AB, Wood BL, Horton TM, Shannon KM, Teachey DT, Hermiston ML. Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. J Clin Invest 2020; 130:863-876. [PMID: 31687977 PMCID: PMC6994137 DOI: 10.1172/jci130189] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of therapy for patients with T cell acute lymphoblastic leukemia (T-ALL), and although resistance to GCs is a strong negative prognostic indicator in T-ALL, the mechanisms of GC resistance remain poorly understood. Using diagnostic samples from patients enrolled in the frontline Children's Oncology Group (COG) T-ALL clinical trial AALL1231, we demonstrated that one-third of primary T-ALLs were resistant to GCs when cells were cultured in the presence of IL-7, a cytokine that is critical for normal T cell function and that plays a well-established role in leukemogenesis. We demonstrated that in these T-ALLs and in distinct populations of normal developing thymocytes, GCs paradoxically induced their own resistance by promoting upregulation of IL-7 receptor (IL-7R) expression. In the presence of IL-7, this augmented downstream signal transduction, resulting in increased STAT5 transcriptional output and upregulation of the prosurvival protein BCL-2. Taken together, we showed that IL-7 mediates an intrinsic and physiologic mechanism of GC resistance in normal thymocyte development that is retained during leukemogenesis in a subset of T-ALLs and is reversible with targeted inhibition of the IL-7R/JAK/STAT5/BCL-2 axis.
Collapse
Affiliation(s)
- Lauren K. Meyer
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | | | - Ritu P. Roy
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Aaron Hechmer
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | | | - Tiffaney L. Vincent
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Brent L. Wood
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin M. Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - David T. Teachey
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle L. Hermiston
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| |
Collapse
|