1
|
de Groot NG, Heijmans CM, van der Wiel MK, Bruijnesteijn J, Bontrop RE. The KIR repertoire of a West African chimpanzee population is characterized by limited gene, allele, and haplotype variation. Front Immunol 2023; 14:1308316. [PMID: 38149259 PMCID: PMC10750417 DOI: 10.3389/fimmu.2023.1308316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction The killer cell immunoglobulin-like receptors (KIR) play a pivotal role in modulating the NK cell responses, for instance, through interaction with major histocompatibility complex (MHC) class I molecules. Both gene systems map to different chromosomes but co-evolved during evolution. The human KIR gene family is characterized by abundant allelic polymorphism and copy number variation. In contrast, our knowledge of the KIR repertoire in chimpanzees is limited to 39 reported alleles, with no available population data. Only three genomic KIR region configurations have been mapped, and seventeen additional ones were deduced by genotyping. Methods Previously, we documented that the chimpanzee MHC class I repertoire has been skewed due to an ancient selective sweep. To understand the depth of the sweep, we set out to determine the full-length KIR transcriptome - in our MHC characterized pedigreed West African chimpanzee cohort - using SMRT sequencing (PacBio). In addition, the genomic organization of 14 KIR haplotypes was characterized by applying a Cas9-mediated enrichment approach in concert with long-read sequencing by Oxford Nanopore Technologies. Results In the cohort, we discovered 35 undescribed and 15 already recorded Patr-KIR alleles, and a novel hybrid KIR gene. Some KIR transcripts are subject to evolutionary conserved alternative splicing events. A detailed insight on the KIR region dynamics (location and order of genes) was obtained, however, only five new KIR region configurations were detected. The population data allowed to investigate the distribution of the MHC-C1 and C2-epitope specificity of the inhibitory lineage III KIR repertoire, and appears to be skewed towards C2. Discussion Although the KIR region is known to evolve fast, as observed in other primate species, our overall conclusion is that the genomic architecture and repertoire in West African chimpanzees exhibit only limited to moderate levels of variation. Hence, the ancient selective sweep that affected the chimpanzee MHC class I region may also have impacted the KIR system.
Collapse
Affiliation(s)
- Natasja G. de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Corrine M.C. Heijmans
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit K.H. van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E. Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Behringer V, Deimel C, Stevens JMG, Kreyer M, Lee SM, Hohmann G, Fruth B, Heistermann M. Cell-Mediated Immune Ontogeny Is Affected by Sex but Not Environmental Context in a Long-Lived Primate Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.629094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ecoimmunology conceptualizes the role of immunity in shaping life history in a natural context. Within ecoimmunology, macroimmunology is a framework that explains the effects of habitat and spatial differences on variation in immune phenotypes across populations. Within these frameworks, immune ontogeny—the development of the immune system across an individual life span—has received little attention. Here, we investigated how immune ontogeny from birth until adulthood is affected by age, sex, and developmental environment in a long-lived primate species, the bonobo. We found a progressive, significant decline of urinary neopterin levels, a marker for the cell-mediated immune response, from birth until 5 years of age in both sexes. The overall pattern of age-related neopterin changes was sex-specific, with males having higher urinary neopterin levels than females in the first 3 years of life, and females having higher levels than males between 6 and 8 years. Environmental condition (zoo-housed vs. wild) did not influence neopterin levels, nor did age-related changes in neopterin levels differ between environments. Our data suggest that the post-natal development of cell-mediated immune ontogeny is sex-specific but does not show plasticity in response to environmental conditions in this long-lived primate species. This indicates that cell-mediated immune ontogeny in the bonobo follows a stereotypic and maybe a genetically determined pattern that is not affected by environmental differences in pathogen exposure and energy availability, but that sex is an important, yet often overlooked factor shaping patterns of immune ontogeny. Investigating the causes and consequences of variation in immunity throughout life is critical for our understanding of life-history evolution and strategies, mechanisms of sexual selection, and population dynamics with respect to pathogen susceptibility. A general description of sex-specific immune ontogeny as done here is a crucial step in this direction, particularly when it is considered in the context of a species’ ecology and evolutionary history.
Collapse
|
3
|
Cheng X, DeGiorgio M. Flexible Mixture Model Approaches That Accommodate Footprint Size Variability for Robust Detection of Balancing Selection. Mol Biol Evol 2020; 37:3267-3291. [PMID: 32462188 PMCID: PMC7820363 DOI: 10.1093/molbev/msaa134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and CCDC169-SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named BalLeRMix for future applications by the scientific community.
Collapse
Affiliation(s)
- Xiaoheng Cheng
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| |
Collapse
|
4
|
Vangenot C, Nunes JM, Doxiadis GM, Poloni ES, Bontrop RE, de Groot NG, Sanchez-Mazas A. Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan troglodytes verus) and humans indicate highly conserved mechanisms of MHC molecular evolution. BMC Evol Biol 2020; 20:119. [PMID: 32933484 PMCID: PMC7491122 DOI: 10.1186/s12862-020-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Many species are threatened with extinction as their population sizes decrease with changing environments or face novel pathogenic threats. A reduction of genetic diversity at major histocompatibility complex (MHC) genes may have dramatic effects on populations' survival, as these genes play a key role in adaptive immunity. This might be the case for chimpanzees, the MHC genes of which reveal signatures of an ancient selective sweep likely due to a viral epidemic that reduced their population size a few million years ago. To better assess how this past event affected MHC variation in chimpanzees compared to humans, we analysed several indexes of genetic diversity and linkage disequilibrium across seven MHC genes on four cohorts of chimpanzees and we compared them to those estimated at orthologous HLA genes in a large set of human populations. RESULTS Interestingly, the analyses uncovered similar patterns of both molecular diversity and linkage disequilibrium across the seven MHC genes in chimpanzees and humans. Indeed, in both species the greatest allelic richness and heterozygosity were found at loci A, B, C and DRB1, the greatest nucleotide diversity at loci DRB1, DQA1 and DQB1, and both significant global linkage disequilibrium and the greatest proportions of haplotypes in linkage disequilibrium were observed at pairs DQA1 ~ DQB1, DQA1 ~ DRB1, DQB1 ~ DRB1 and B ~ C. Our results also showed that, despite some differences among loci, the levels of genetic diversity and linkage disequilibrium observed in contemporary chimpanzees were globally similar to those estimated in small isolated human populations, in contrast to significant differences compared to large populations. CONCLUSIONS We conclude, first, that highly conserved mechanisms shaped the diversity of orthologous MHC genes in chimpanzees and humans. Furthermore, our findings support the hypothesis that an ancient demographic decline affecting the chimpanzee populations - like that ascribed to a viral epidemic - exerted a substantial effect on the molecular diversity of their MHC genes, albeit not more pronounced than that experienced by HLA genes in human populations that underwent rapid genetic drift during humans' peopling history. We thus propose a model where chimpanzees' MHC genes regenerated molecular variation through recombination/gene conversion and/or balancing selection after the selective sweep.
Collapse
Affiliation(s)
- Christelle Vangenot
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Gaby M Doxiadis
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Estella S Poloni
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Heijmans CMC, de Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int J Immunogenet 2020; 47:243-260. [PMID: 32358905 DOI: 10.1111/iji.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions.
Collapse
Affiliation(s)
- Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. J Virol 2020; 94:JVI.01960-19. [PMID: 32075930 DOI: 10.1128/jvi.01960-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
The major histocompatibility complex (MHC) class I region of humans, chimpanzees (Pan troglodytes), and bonobos (Pan paniscus) is highly similar, and orthologues of HLA-A, -B, and -C are present in both Pan species. Based on functional characteristics, the different HLA-A allotypes are classified into different supertypes. One of them, the HLA A03 supertype, is widely distributed among different human populations. All contemporary known chimpanzee and bonobo MHC class I A allotypes cluster genetically into one of the six HLA-A families, the HLA-A1/A3/A11/A30 family. We report here that the peptide-binding motif of the Patr-A*05:01 allotype, which is commonly present in a cohort of western African chimpanzees, has a strong preference for binding peptides with basic amino acids at the carboxyl terminus. This phenomenon is shared with the family members of the HLA A03 supertype. Based on the chemical similarities in the peptide-binding pocket, we inferred that the preference for binding peptides with basic amino acids at the carboxyl terminus is widely present among the human, chimpanzee, and bonobo MHC-A allotypes. Subsequent in silico peptide-binding predictions illustrated that these allotypes have the capacity to target conserved parts of the proteome of human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus SIVcpz.IMPORTANCE Most experimentally infected chimpanzees seem to control an HIV-1 infection and are therefore considered to be relatively resistant to developing AIDS. Contemporary free-ranging chimpanzees may carry SIVcpz, and there is evidence for AIDS-like symptoms in these free-ranging animals, whereas SIV infections in bonobos appear to be absent. In humans, the natural control of an HIV-1 infection is strongly associated with the presence of particular HLA class I allotypes. The ancestor of the contemporary living chimpanzees and bonobos survived a selective sweep targeting the MHC class I repertoire. We have put forward a hypothesis that this may have been caused by an ancestral retroviral infection similar to SIVcpz. Characterization of the relevant MHC allotypes may contribute to understanding the shaping of their immune repertoire. The abundant presence of MHC-A allotypes that prefer peptides with basic amino acids at the C termini suggests that these molecules may contribute to the control of retroviral infections in humans, chimpanzees, and bonobos.
Collapse
|
8
|
Bruijnesteijn J, de Groot N, van der Wiel MKH, Otting N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Unparalleled Rapid Evolution of KIR Genes in Rhesus and Cynomolgus Macaque Populations. THE JOURNAL OF IMMUNOLOGY 2020; 204:1770-1786. [PMID: 32111732 DOI: 10.4049/jimmunol.1901140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
The killer cell Ig-like receptors (KIR) modulate immune responses through interactions with MHC class I molecules. The KIR region in large cohorts of rhesus and cynomolgus macaque populations were characterized, and the experimental design enabled the definition of a considerable number of alleles (n = 576) and haplotypes, which are highly variable with regard to architecture. Although high levels of polymorphism were recorded, only a few alleles are shared between species and populations. The rapid evolution of allelic polymorphism, accumulated by point mutations, was further confirmed by the emergence of a novel KIR allele in a rhesus macaque family. In addition to allelic variation, abundant orthologous and species-specific KIR genes were identified, the latter of which are frequently generated by fusion events. The concerted action of both genetic mechanisms, in combination with differential selective pressures at the population level, resulted in the unparalleled rapid evolution of the KIR gene region in two closely related macaque species. The variation of the KIR gene repertoire at the species and population level might have an impact on the outcome of preclinical studies with macaque models.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Marit K H van der Wiel
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and .,Theoretical Biology and Bioinformatics Group, Utrecht University, 3527 Utrecht, the Netherlands
| |
Collapse
|
9
|
Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics 2019; 72:25-36. [PMID: 31624862 DOI: 10.1007/s00251-019-01132-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.
Collapse
|
10
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Maibach V, Vigilant L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol Biol 2019; 19:14. [PMID: 30630404 PMCID: PMC6327438 DOI: 10.1186/s12862-019-1352-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The highly polymorphic genes of the major histocompatibility complex (MHC) class I are involved in defense against viruses and other intracellular pathogens. Although several studies found reduced MHC class I diversity in bonobos in comparison to the closely related chimpanzee, it is unclear if this lower diversity also influences the functional ability of MHC class I molecules in bonobos. Here, we use a bioinformatic approach to analyze the viral peptide binding ability of all published bonobo MHC class I molecules (n = 58) in comparison to all published chimpanzee MHC class I molecules (n = 161) for the class I loci A, B, C and A-like. RESULTS We examined the peptide binding ability of all 219 different MHC class I molecules to 5,788,712 peptides derived from 1432 different primate viruses and analyzed the percentage of bound peptides and the overlap of the peptide binding repertoires of the two species. We conducted multiple levels of analysis on the "species"-, "population"- and "individual"-level to account for the characterization of MHC variation in a larger number of chimpanzees and their broader geographic distribution. We found a lower percentage of bound peptides in bonobos at the B locus in the "population"-level comparison and at the B and C loci in the "individual"-level comparison. Furthermore, we found evidence of a limited peptide binding repertoire in bonobos by tree-based visualization of functional clustering of MHC molecules, as well as an analysis of peptides bound by both species. CONCLUSION Our results suggest a reduced MHC class I viral peptide binding ability at the B and C loci in bonobos compared to chimpanzees. The effects of this finding on the immune defense against viruses in wild living bonobos are unclear. However, special caution is needed to prevent introduction and spread of new viruses to bonobos, as their defensive ability to cope with new viruses could be limited compared to chimpanzees.
Collapse
Affiliation(s)
- Vincent Maibach
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
12
|
de Groot NG, Stevens JM, Bontrop RE. Does the MHC Confer Protection against Malaria in Bonobos? Trends Immunol 2018; 39:768-771. [DOI: 10.1016/j.it.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
|
13
|
Abstract
The ancestral progenitor of common chimpanzees and bonobos experienced a selective sweep that ravaged its major histocompatibility complex (MHC) class I repertoire. The causative agent was probably an ancestral retrovirus, highly related to the contemporary HIV-1 strain, which initiated the acquired immunodeficiency syndrome pandemic in the human population. As a direct result, MHC class I allotypes with the capability of targeting conserved retroviral elements were enriched in the ancestral progenitor. Even today, the impact can be traced back by studying the functional capacities of the contemporary MHC class I allotypes of common chimpanzees. Viruses, however, have developed several strategies to manipulate the cell-surface expression of MHC class I genes. Monitoring the presence and absence of the MHC class I allotypes on the cell surface is conducted, for instance, by the hosts' gene products of the killer cell immunoglobulin-like receptor (KIR) complex. Hence, one may wonder whether-in the future-any clues with regard to the signature of the MHC class I selective sweep might be unearthed for the KIR genes as well.
Collapse
|