1
|
Turganbekova A, Abdrakhmanova S, Masalimov Z, Almawi WY. Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review. Genes (Basel) 2025; 16:342. [PMID: 40149493 PMCID: PMC11941833 DOI: 10.3390/genes16030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The human leukocyte antigen (HLA) system represents the most polymorphic segment within human DNA sequences and constitutes a core component of immune defense responses and in understanding population genetics. This research investigates the distribution of HLA class I and II polymorphisms across different ethnic groups in Kazakhstan, offering valuable insights into the genetic diversity and demographic evolution within this region. Methods: We performed an in-depth examination of HLA class I and II polymorphisms across diverse ethnic communities living in Kazakhstan, including Kazakhs, Russians, Uzbeks, Ukrainians, Germans, Tatars, and Koreans. Utilizing data from high-resolution HLA typing studies allowed us to assess allele frequencies alongside haplotype distributions while analyzing genetic interrelations between these populations. Additionally, we performed comparative assessments with global HLA databases to determine the genetic affiliations between these groups and their relationships with neighboring and more distant populations. Results: Our study revealed over 200 HLA alleles within the analyzed populations, and significant variations were observed in their allele and haplotype frequencies. Notably, the Kazakh group exhibited strong genetic ties to Asian and Siberian demographics; conversely, other ethnicities showed associations reflective of their historical roots. Notable alleles included HLA-A*02:01, B*07:02, C*07:02, DRB1*07:01, and DQB1*03:01, commonly observed across various groups. Linkage disequilibrium analysis revealed the presence of population-specific haplotypes, highlighting distinct genetic structures within these communities. Conclusions: The findings highlight the significant genetic diversity in Kazakhstan, influenced by its geographical location at the crossroads of Europe and Asia. These results are pertinent to immunogenetics, transplantation medicine, and personalized healthcare within Kazakhstan and adjacent regions. Future research should expand the sample size and explore disease associations to enhance our comprehension of HLA genetics across Central Asia.
Collapse
Affiliation(s)
- Aida Turganbekova
- Scientific and Production Center for Transfusiology, Astana 010000, Kazakhstan; (A.T.); (S.A.)
| | - Saniya Abdrakhmanova
- Scientific and Production Center for Transfusiology, Astana 010000, Kazakhstan; (A.T.); (S.A.)
| | - Zhaksylyk Masalimov
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Wassim Y. Almawi
- Faculty of Sciences, El-Manar University, El-Manar University Campus at El-Manar, Tunis 2092, Tunisia
| |
Collapse
|
2
|
Maccari G, Robinson J, Barker D, Yates A, Hammond J, Marsh SE. The 2024 IPD-MHC database update: a comprehensive resource for major histocompatibility complex studies. Nucleic Acids Res 2025; 53:D457-D461. [PMID: 39436012 PMCID: PMC11701557 DOI: 10.1093/nar/gkae932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) serves as a comprehensive and expertly curated repository for major histocompatibility complex (MHC) sequences from non-human species, providing the necessary infrastructure and tools to study the function and evolution of this highly polymorphic genomic region. In its latest version, the IPD-MHC database has expanded both in content and in the tools for data visualization and comparison. The database now hosts over 18 000 MHC alleles from 125 species, organized into eleven taxonomic groups, all manually curated and named by the Comparative MHC Nomenclature Committee. A cetacean section has recently been included, offering researchers valuable data to study the immune system of whales, dolphins, and porpoises, as well establishing the official nomenclature platform for the Cetacea Leukocyte Antigens (CeLA). In response to user demand and reflecting broader trends in bioinformatics and immunogenetics, IPD-MHC now includes the predicted tertiary structure of over 8000 alleles and allows comparison and visualisation of allele variation within and between species at single residue resolution. These latest developments maintain the critically important link between official nomenclature of curated alleles and the ability to analyse this complex polymorphism using the most up to date methods within a single repository.
Collapse
Affiliation(s)
- Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Hospital, Pond Street, London NW3 2QG, UK
- UCL Cancer Institute, University College London (UCL), Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Dominic J Barker
- Anthony Nolan Research Institute, Royal Free Hospital, Pond Street, London NW3 2QG, UK
- UCL Cancer Institute, University College London (UCL), Royal Free Campus, Pond Street, London NW3 2QG, UK
| | - Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, Cambridgeshire CB10 1SD, UK
| | - John A Hammond
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, Pond Street, London NW3 2QG, UK
- UCL Cancer Institute, University College London (UCL), Royal Free Campus, Pond Street, London NW3 2QG, UK
| |
Collapse
|
3
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
4
|
Schwartz JC, Farrell CP, Freimanis G, Sewell AK, Phillips JD, Hammond JA. A genome assembly and transcriptome atlas of the inbred Babraham pig to illuminate porcine immunogenetic variation. Immunogenetics 2024; 76:361-380. [PMID: 39294478 PMCID: PMC11496355 DOI: 10.1007/s00251-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
The inbred Babraham pig serves as a valuable biomedical model for research due to its high level of homozygosity, including in the major histocompatibility complex (MHC) loci and likely other important immune-related gene complexes, which are generally highly diverse in outbred populations. As the ability to control for this diversity using inbred organisms is of great utility, we sought to improve this resource by generating a long-read whole genome assembly and transcriptome atlas of a Babraham pig. The genome was de novo assembled using PacBio long reads and error-corrected using Illumina short reads. Assembled contigs were then mapped to the porcine reference assembly, Sscrofa11.1, to generate chromosome-level scaffolds. The resulting TPI_Babraham_pig_v1 assembly is nearly as contiguous as Sscrofa11.1 with a contig N50 of 34.95 Mb and contig L50 of 23. The remaining sequence gaps are generally the result of poor assembly across large and highly repetitive regions such as the centromeres and tandemly duplicated gene families, including immune-related gene complexes, that often vary in gene content between haplotypes. We also further confirm homozygosity across the Babraham MHC and characterize the allele content and tissue expression of several other immune-related gene complexes, including the antibody and T cell receptor loci, the natural killer complex, and the leukocyte receptor complex. The Babraham pig genome assembly provides an alternate highly contiguous porcine genome assembly as a resource for the livestock genomics community. The assembly will also aid biomedical and veterinary research that utilizes this animal model such as when controlling for genetic variation is critical.
Collapse
Affiliation(s)
| | - Colin P Farrell
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - John D Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - John A Hammond
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK.
| |
Collapse
|
5
|
Hung TK, Liu WC, Lai SK, Chuang HW, Lee YC, Lin HY, Hsu CL, Chen CY, Yang YC, Hsu JS, Chen PL. Genetic complexity of killer-cell immunoglobulin-like receptor genes in human pangenome assemblies. Genome Res 2024; 34:1211-1223. [PMID: 39251346 PMCID: PMC11444179 DOI: 10.1101/gr.278358.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
The killer-cell immunoglobulin-like receptor (KIR) gene complex, a highly polymorphic region of the human genome that encodes proteins involved in immune responses, poses strong challenges in genotyping owing to its remarkable genetic diversity and structural intricacy. Accurate analysis of KIR alleles, including their structural variations, is crucial for understanding their roles in various immune responses. Leveraging the high-quality genome assemblies from the Human Pangenome Reference Consortium (HPRC), we present a novel bioinformatic tool, the structural KIR annoTator (SKIRT), to investigate gene diversity and facilitate precise KIR allele analysis. In 47 HPRC-phased assemblies, SKIRT identifies a recurrent novel KIR2DS4/3DL1 fusion gene in the paternal haplotype of HG02630 and maternal haplotype of NA19240. Additionally, SKIRT accurately identifies eight structural variants and 15 novel nonsynonymous alleles, all of which are independently validated using short-read data or quantitative polymerase chain reaction. Our study has discovered a total of 570 novel alleles, among which eight haplotypes harbor at least one KIR gene duplication, six haplotypes have lost at least one framework gene, and 75 out of 94 haplotypes (79.8%) carry at least five novel alleles, thus confirming KIR genetic diversity. These findings are pivotal in providing insights into KIR gene diversity and serve as a solid foundation for understanding the functional consequences of KIR structural variations. High-resolution genome assemblies offer unprecedented opportunities to explore polymorphic regions that are challenging to investigate using short-read sequencing methods. The SKIRT pipeline emerges as a highly efficient tool, enabling the comprehensive detection of the complete spectrum of KIR alleles within human genome assemblies.
Collapse
Affiliation(s)
- Tsung-Kai Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Chi Liu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Sheng-Kai Lai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100229, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Wen Chuang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Yi-Che Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Hong-Ye Lin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100229, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| |
Collapse
|
6
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
7
|
Heimeier D, Garland EC, Eichenberger F, Garrigue C, Vella A, Baker CS, Carroll EL. A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies. Mol Ecol Resour 2024; 24:e13955. [PMID: 38520161 DOI: 10.1111/1755-0998.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 03/25/2024]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.
Collapse
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| | - Ellen C Garland
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Franca Eichenberger
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Claire Garrigue
- UMR ENTROPIE, (IRD, Université de La Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, Laboratoire d'Excellence-CORAIL), Nouméa, New Caledonia
- Opération Cétacés, Nouméa, New Caledonia
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - C Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
8
|
Wright PA, van de Pasch LAL, Dignan FL, Kichula KM, Pollock NR, Norman PJ, Marchan E, Hill L, Vandelbosch S, Fullwood C, Sheldon S, Hampson L, Tholouli E, Poulton KV. Donor KIR2DL1 Allelic Polymorphism Influences Posthematopoietic Progenitor Cell Transplantation Outcomes in the T Cell Depleted and Reduced Intensity Conditioning Setting. Transplant Cell Ther 2024; 30:488.e1-488.e15. [PMID: 38369017 PMCID: PMC11056303 DOI: 10.1016/j.jtct.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The majority of established KIR clinical assessment algorithms used for donor selection for hematopoietic progenitor cell transplantation (HPCT) evaluate gene content (presence/absence) of the KIR gene complex. In comparison, relatively little is known about the impact of KIR allelic polymorphism. By analyzing donors of T cell depleted (TcD) reduced intensity conditioning (RIC) HPCT, this study investigated the influence on post-transplant outcome of 2 polymorphic residues of the inhibitory KIR2DL1. The aim of this study was to expand upon existing research into the influence of KIR2DL1 allelic polymorphism upon post-transplant outcome. The effects of allele groups upon transplant outcomes were investigated within a patient cohort using a defined treatment protocol of RIC with TcD. Using phylogenetic data, KIR2DL1 allelic polymorphism was categorized into groups on the basis of variation within codons 114 and 245 (positive or negative for the following groups: KIR2DL1*002/001g, KIR2DL1*003, KIR2DL1*004g) and the identification of null alleles. The influence of these KIR2DL1 allele groups in hematopoietic progenitor cell transplantation (HPCT) donors was assessed in the post-transplant data of 86 acute myelogenous leukemia patients receiving RIC TcD HPCT at a single center. KIR2DL1 allele groups in the donor significantly impacted upon 5-year post-transplant outcomes in RIC TcD HPCT. Donor KIR2DL1*003 presented the greatest influence upon post-transplant outcomes, with KIR2DL1*003 positive donors severely reducing 5-year post-transplant overall survival (OS) compared to those receiving a transplant from a KIR2DL1*003 negative donor (KIR2DL1*003 pos versus neg: 27.0% versus 60.0%, P = .008, pc = 0.024) and disease-free survival (DFS) (KIR2DL1*003 pos versus neg: 23.5% versus 60.0%, P = .004, pc = 0.012), and increasing 5-year relapse incidence (KIR2DL1*003 pos versus neg: 63.9% versus 27.2%, P = .009, pc = 0.027). KIR2DL1*003 homozygous and KIR2DL1*003 heterozygous grafts did not present significantly different post-transplant outcomes. Donors possessing the KIR2DL1*002/001 allele group were found to significantly improve post-transplant outcomes, with donors positive for the KIR2DL1*004 allele group presenting a trend towards improvement. KIR2DL1*002/001 allele group (KIR2DL1*002/001g) positive donors improved 5-year OS (KIR2DL1*002/001g pos versus neg: 56.4% versus 27.2%, P = .009, pc = 0.024) and DFS (KIR2DL1*002/001g pos versus neg: 53.8% versus 25.5%, P = .018, pc = 0.036). KIR2DL1*004 allele group (KIR2DL1*004g) positive donors trended towards improving 5-year OS (KIR2DL1*004g pos versus neg: 53.3% versus 35.5%, P = .097, pc = 0.097) and DFS (KIR2DL1*004g pos versus neg: 50.0% versus 33.9%, P = .121, pc = 0.121), and reducing relapse incidence (KIR2DL1*004g pos versus neg: 33.1% versus 54.0%, P = .079, pc = 0.152). The presented findings suggest donor selection algorithms for TcD RIC HPCT should consider avoiding KIR2DL1*003 positive donors, where possible, and contributes to the mounting evidence that KIR assessment in donor selection algorithms should reflect the conditioning regime protocol used.
Collapse
Affiliation(s)
- Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Histocompatibility & Immunogenetics Laboratory, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK.
| | | | - Fiona L Dignan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Katherine M Kichula
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Nicholas R Pollock
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Paul J Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Earl Marchan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lesley Hill
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | | | - Catherine Fullwood
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, Greater Manchester, UK
| | - Stephen Sheldon
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lynne Hampson
- Division of Cancer Sciences, University of Manchester, Manchester, Greater Manchester, UK
| | - Eleni Tholouli
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Kay V Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Faculty of Biology, Medicine & Health, University of Manchester, Manchester, Greater Manchester, UK
| |
Collapse
|
9
|
Montero-Martin G, Kichula KM, Misra MK, Vargas LB, Marin WM, Hollenbach JA, Fernández-Viña MA, Elfishawi S, Norman PJ. Exceptional diversity of KIR and HLA class I in Egypt. HLA 2024; 103:e15177. [PMID: 37528739 PMCID: PMC11068459 DOI: 10.1111/tan.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maneesh K. Misra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Luciana B. Vargas
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley M. Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Sally Elfishawi
- BMT lab unit, Clinical Pathology Dept., National Cancer Institute, Cairo University, Cairo, Egypt
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
10
|
Khatooni Z, Teymourian N, Wilson HL. Using a novel structure/function approach to select diverse swine major histocompatibility complex 1 alleles to predict epitopes for vaccine development. Bioinformatics 2023; 39:btad590. [PMID: 37740287 PMCID: PMC10551226 DOI: 10.1093/bioinformatics/btad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Swine leukocyte antigens (SLAs) (i.e. swine major histocompatibility complex proteins) conduct a fundamental role in swine immunity. To generate a protective vaccine across an outbred species, such as pigs, it is critical that epitopes that bind to diverse SLA alleles are used in the vaccine development process. We introduced a new strategy for epitope prediction. RESULTS We employed molecular dynamics simulation to identify key amino acids for interactions with epitopes. We developed an algorithm wherein each SLA-1 is compared to a crystalized reference allele with unique weighting for non-conserved amino acids based on R group and position. We then performed homology modeling and electrostatic contact mapping to visualize how relatively small changes in sequences impacted the charge distribution in the binding site. We selected eight diverse SLA-1 alleles and performed homology modeling followed, by protein-peptide docking and binding affinity analyses, to identify porcine reproductive and respiratory syndrome virus matrix protein epitopes that bind with high affinity to these alleles. We also performed docking analysis on the epitopes identified as strong binders using NetMHCpan 4.1. Epitopes predicted to bind to our eight SLA-1 alleles had equivalent or higher energetic interactions than those predicted to bind to the NetMHCpan 4.1 allele repertoire. This approach of selecting diverse SLA-1 alleles, followed by homology modeling, and docking simulations, can be used as a novel strategy for epitope prediction that complements other available tools and is especially useful when available tools do not offer a prediction for SLAs/major histocompatibility complex. AVAILABILITY AND IMPLEMENTATION The data underlying this article are available in the online Supplementary Material.
Collapse
Affiliation(s)
- Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Computer Science, University of Kurdistan, Sanandaj, Iran
| | - Navid Teymourian
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Computer Science, University of Kurdistan, Sanandaj, Iran
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
11
|
Philippon C, Tao S, Clement D, Haroun-Izquierdo A, Kichula KM, Netskar H, Brandt L, Oei VS, Kanaya M, Lanuza PM, Schaffer M, Goodridge JP, Horowitz A, Zhu F, Hammer Q, Sohlberg E, Majhi RK, Kveberg L, Önfelt B, Norman PJ, Malmberg KJ. Allelic variation of KIR and HLA tunes the cytolytic payload and determines functional hierarchy of NK cell repertoires. Blood Adv 2023; 7:4492-4504. [PMID: 37327114 PMCID: PMC10440473 DOI: 10.1182/bloodadvances.2023009827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023] Open
Abstract
The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.
Collapse
Affiliation(s)
- Camille Philippon
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Sudan Tao
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dennis Clement
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Alvaro Haroun-Izquierdo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katherine M. Kichula
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Herman Netskar
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Ludwig Brandt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vincent Sheng Oei
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Minoru Kanaya
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Pilar Maria Lanuza
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Amir Horowitz
- Department of Oncological Sciences, The Marc and Jennifer Lipshultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Quirin Hammer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ebba Sohlberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rakesh Kumar Majhi
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
| | - Lise Kveberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul J. Norman
- Department of Biomedical Informatics, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance (PRIMA), Institute for Clinical medicine, The University of Oslo, Oslo, Norway
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
13
|
Jones TEM, Yates B, Braschi B, Gray K, Tweedie S, Seal RL, Bruford EA. The VGNC: expanding standardized vertebrate gene nomenclature. Genome Biol 2023; 24:115. [PMID: 37173739 PMCID: PMC10176861 DOI: 10.1186/s13059-023-02957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Vertebrate Gene Nomenclature Committee (VGNC) was established in 2016 as a sister project to the HUGO Gene Nomenclature Committee, to approve gene nomenclature in vertebrate species without an existing dedicated nomenclature committee. The VGNC aims to harmonize gene nomenclature across selected vertebrate species in line with human gene nomenclature, with orthologs assigned the same nomenclature where possible. This article presents an overview of the VGNC project and discussion of key findings resulting from this work to date. VGNC-approved nomenclature is accessible at https://vertebrate.genenames.org and is additionally displayed by the NCBI, Ensembl, and UniProt databases.
Collapse
Affiliation(s)
- Tamsin E. M. Jones
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Bethan Yates
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Current address: Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA Cambridgeshire UK
| | - Bryony Braschi
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Kristian Gray
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| | - Susan Tweedie
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
| | - Ruth L. Seal
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridgeshire UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW Cambridgeshire UK
| |
Collapse
|
14
|
Kaplan BS, Hofstetter AR, McGill JL, Lippolis JD, Norimine J, Dassanayake RP, Sacco RE. Identification of a DRB3*011:01-restricted CD4 + T cell response against bovine respiratory syncytial virus fusion protein. Front Immunol 2023; 14:1040075. [PMID: 36891302 PMCID: PMC9986546 DOI: 10.3389/fimmu.2023.1040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Although Human Respiratory Syncytial Virus (HRSV) is a significant cause of severe respiratory disease with high morbidity and mortality in pediatric and elderly populations worldwide there is no licensed vaccine. Bovine Respiratory Syncytial Virus (BRSV) is a closely related orthopneumovirus with similar genome structure and high homology between structural and nonstructural proteins. Like HRSV in children, BRSV is highly prevalent in dairy and beef calves and known to be involved in the etiology of bovine respiratory disease, in addition to being considered an excellent model for HRSV. Commercial vaccines are currently available for BRSV, though improvements in efficacy are needed. The aims of this study were to identify CD4+ T cell epitopes present in the fusion glycoprotein of BRSV, an immunogenic surface glycoprotein that mediates membrane fusion and a major target of neutralizing antibodies. Overlapping peptides representing three regions of the BRSV F protein were used to stimulate autologous CD4+ T cells in ELISpot assays. T cell activation was observed only in cells from cattle with the DRB3*011:01 allele by peptides from AA249-296 of the BRSV F protein. Antigen presentation studies with C-terminal truncated peptides further defined the minimum peptide recognized by the DRB3*011:01 allele. Computationally predicted peptides presented by artificial antigen presenting cells further confirmed the amino acid sequence of a DRB3*011:01 restricted class II epitope on the BRSV F protein. These studies are the first to identify the minimum peptide length of a BoLA-DRB3 class II-restricted epitope in BRSV F protein.
Collapse
Affiliation(s)
- Bryan S. Kaplan
- Ruminant Diseases & Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Amelia R. Hofstetter
- Ruminant Diseases & Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - John D. Lippolis
- Ruminant Diseases & Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Junzo Norimine
- Department of Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Rohana P. Dassanayake
- Ruminant Diseases & Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases & Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
15
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
16
|
Enhanced Extracellular Transfer of HLA-DQ Activates CD3+ Lymphocytes towards Compromised Treg Induction in Celiac Disease. Int J Mol Sci 2022; 23:ijms23116102. [PMID: 35682780 PMCID: PMC9181181 DOI: 10.3390/ijms23116102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3+ lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25+ CD127− T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease.
Collapse
|
17
|
Schwartz JC, Maccari G, Heimeier D, Hammond JA. Highly-contiguous bovine genomes underpin accurate functional analyses and updated nomenclature of MHC class I. HLA 2021; 99:167-182. [PMID: 34802191 DOI: 10.1111/tan.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) class I region of cattle is both highly polymorphic and, unlike many species, highly variable in gene content between haplotypes. Cattle MHC class I alleles were historically grouped by sequence similarity in the more conserved 3' end of the coding sequence to form phylogenetic allele groups. This has formed the basis of current cattle MHC class I nomenclature. We presently describe and compare five fully assembled MHC class I haplotypes using the latest cattle and yak genome assemblies. Of the five previously described "pseudogenes" in the cattle MHC class I region, Pseudogene 3 is putatively functional in all haplotypes and Pseudogene 6 and Pseudogene 7 are putatively functional in some haplotypes. This was reinforced by evidence of transcription. Based on full gene sequences as well as 3' coding sequence, we identified distinct subgroups of BoLA-3 and BoLA-6 that represent distinct genetic loci. We further examined allele-specific expression using transcriptomic data revealing that certain alleles are consistently weakly expressed compared to others. These observations will help to inform further studies into how MHC class I region variability influences T cell and natural killer cell functions in cattle.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, UK.,Anthony Nolan Research Institute, London, UK
| | | | | |
Collapse
|
18
|
Bruijnesteijn J, van der Wiel M, de Groot NG, Bontrop RE. Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Front Immunol 2021; 12:722181. [PMID: 34594334 PMCID: PMC8476923 DOI: 10.3389/fimmu.2021.722181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Long-read sequencing approaches have considerably improved the quality and contiguity of genome assemblies. Such platforms bear the potential to resolve even extremely complex regions, such as multigenic immune families and repetitive stretches of DNA. Deep sequencing coverage, however, is required to overcome low nucleotide accuracy, especially in regions with high homopolymer density, copy number variation, and sequence similarity, such as the MHC and KIR gene clusters of the immune system. Therefore, we have adapted a targeted enrichment protocol in combination with long-read sequencing to efficiently annotate complex KIR gene regions. Using Cas9 endonuclease activity, segments of the KIR gene cluster were enriched and sequenced on an Oxford Nanopore Technologies platform. This provided sufficient coverage to accurately resolve and phase highly complex KIR haplotypes. Our strategy eliminates PCR-induced amplification errors, facilitates rapid characterization of large and complex multigenic regions, including its epigenetic footprint, and is applicable in multiple species, even in the absence of a reference genome.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Kloch A, Biedrzycka A, Szewczyk M, Nowak S, Niedźwiedzka N, Kłodawska M, Hájková A, Hulva P, Jędrzejewska B, Mysłajek R. High genetic diversity of immunity genes in an expanding population of a highly mobile carnivore, the grey wolf
Canis
lupus
, in Central Europe. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | | | - Maciej Szewczyk
- Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Gdańsk Poland
| | - Sabina Nowak
- Association for Nature “Wolf” Twardorzeczka Poland
| | | | - Monika Kłodawska
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
| | - Andrea Hájková
- State Nature Conservancy of the Slovak Republic Spišská Nová Ves Slovakia
| | - Pavel Hulva
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Robert Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| |
Collapse
|
20
|
Bolarín JM, Pérez-Cárceles M, Luna A, Minguela A, Muro M, Legaz I. Killer cell immunoglobulin-like receptors (KIR) genes can be an adequate tool in forensic anthropological studies: evaluation in a wide Caucasian Spanish population. AUST J FORENSIC SCI 2021. [DOI: 10.1080/00450618.2021.1930156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- J. M. Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - M.D. Pérez-Cárceles
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - A. Luna
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - A. Minguela
- Immunology Service, Instituto Murciano de investigación biosanitaria (IMIB) and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Murcia, Spain
| | - M. Muro
- Immunology Service, Instituto Murciano de investigación biosanitaria (IMIB) and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), Murcia, Spain
| | - I. Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
21
|
Klasberg S, Schmidt AH, Lange V, Schöfl G. DR2S: an integrated algorithm providing reference-grade haplotype sequences from heterozygous samples. BMC Bioinformatics 2021; 22:236. [PMID: 33971817 PMCID: PMC8111713 DOI: 10.1186/s12859-021-04153-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 01/30/2023] Open
Abstract
Background High resolution HLA genotyping of donors and recipients is a crucially important prerequisite for haematopoetic stem-cell transplantation and relies heavily on the quality and completeness of immunogenetic reference sequence databases of allelic variation. Results Here, we report on DR2S, an R package that leverages the strengths of two sequencing technologies—the accuracy of next-generation sequencing with the read length of third-generation sequencing technologies like PacBio’s SMRT sequencing or ONT’s nanopore sequencing—to reconstruct fully-phased high-quality full-length haplotype sequences. Although optimised for HLA and KIR genes, DR2S is applicable to all loci with known reference sequences provided that full-length sequencing data is available for analysis. In addition, DR2S integrates supporting tools for easy visualisation and quality control of the reconstructed haplotype to ensure suitability for submission to public allele databases. Conclusions DR2S is a largely automated workflow designed to create high-quality fully-phased reference allele sequences for highly polymorphic gene regions such as HLA or KIR. It has been used by biologists to successfully characterise and submit more than 500 HLA alleles and more than 500 KIR alleles to the IPD-IMGT/HLA and IPD-KIR databases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04153-0.
Collapse
|
22
|
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov 2021; 11:1024-1039. [PMID: 33722796 PMCID: PMC8102318 DOI: 10.1158/2159-8290.cd-20-1575] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapeutic manipulation of the antitumor immune response offers an attractive strategy to target genomic instability in cancer. A subset of tumor-specific somatic mutations can be translated into immunogenic and HLA-bound epitopes called neoantigens, which can induce the activation of helper and cytotoxic T lymphocytes. However, cancer immunoediting and immunosuppressive mechanisms often allow tumors to evade immune recognition. Recent evidence also suggests that the tumor neoantigen landscape extends beyond epitopes originating from nonsynonymous single-nucleotide variants in the coding exome. Here we review emerging approaches for identifying, prioritizing, and immunologically targeting personalized neoantigens using polyvalent cancer vaccines and T-cell receptor gene therapy. SIGNIFICANCE: Several major challenges currently impede the clinical efficacy of neoantigen-directed immunotherapy, such as the relative infrequency of immunogenic neoantigens, suboptimal potency and priming of de novo tumor-specific T cells, and tumor cell-intrinsic and -extrinsic mechanisms of immune evasion. A deeper understanding of these biological barriers could help facilitate the development of effective and durable immunotherapy for any type of cancer, including immunologically "cold" tumors that are otherwise therapeutically resistant.
Collapse
Affiliation(s)
- Ravi G Gupta
- Department of Hematology/Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey.
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
de Groot NG, Heijmans CMC, Bezstarosti S, Bruijnesteijn J, Haasnoot GW, Mulder A, Claas FHJ, Heidt S, Bontrop RE. Two Human Monoclonal HLA-Reactive Antibodies Cross-React with Mamu-B*008, a Rhesus Macaque MHC Allotype Associated with Control of Simian Immunodeficiency Virus Replication. THE JOURNAL OF IMMUNOLOGY 2021; 206:1957-1965. [PMID: 33692147 DOI: 10.4049/jimmunol.2001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
MHC class I molecules play an important role in adaptive immune responses against intracellular pathogens. These molecules are highly polymorphic, and many allotypes have been characterized. In a transplantation setting, a mismatch between MHC allotypes may initiate an alloimmune response. Rhesus macaques (Macaca mulatta, Mamu) are valuable as a preclinical model species in transplantation research as well as to evaluate the safety and efficacy of vaccine candidates. In both lines of research, the availability of nonhuman primate MHC-reactive mAbs may enable in vitro monitoring and detection of presence of particular Mamu molecules. In this study, we screened a collection of thoroughly characterized HLA class I-specific human mAbs for cross-reactivity with rhesus macaque MHC class I allotypes. Two mAbs, OK4F9 and OK4F10, recognize an epitope that is defined by isoleucine (I) at amino acid position 142 that is present on the Indian rhesus macaque Mamu-B*008:01 allotype, which is an allotype known to be associated with elite control of SIV replication. The reactive pattern of a third mAb, MUS4H4, is more complex and includes an epitope shared on Mamu-A2*05:01 and -B*001:01-encoded Ags. This is the first description, to our knowledge, of human HLA-reactive mAbs that can recognize Mamu allotypes, and these can be useful tools for in vitro monitoring the presence of the relevant allelic products. Moreover, OK4F9 and OK4F10 can be powerful mAbs for application in SIV-related research.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
24
|
Schetelig J, Baldauf H, Koster L, Kuxhausen M, Heidenreich F, de Wreede LC, Spellman S, van Gelder M, Bruno B, Onida F, Lange V, Massalski C, Potter V, Ljungman P, Schaap N, Hayden P, Lee SJ, Kröger N, Hsu K, Schmidt AH, Yakoub-Agha I, Robin M. Haplotype Motif-Based Models for KIR-Genotype Informed Selection of Hematopoietic Cell Donors Fail to Predict Outcome of Patients With Myelodysplastic Syndromes or Secondary Acute Myeloid Leukemia. Front Immunol 2021; 11:584520. [PMID: 33542712 PMCID: PMC7851088 DOI: 10.3389/fimmu.2020.584520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Results from registry studies suggest that harnessing Natural Killer (NK) cell reactivity mediated through Killer cell Immunoglobulin-like Receptors (KIR) could reduce the risk of relapse after allogeneic Hematopoietic Cell Transplantation (HCT). Several competing models have been developed to classify donors as KIR-advantageous or disadvantageous. Basically, these models differ by grouping donors based on distinct KIR–KIR–ligand combinations or by haplotype motif assignment. This study aimed to validate different models for unrelated donor selection for patients with Myelodysplatic Syndromes (MDS) or secondary Acute Myeloid Leukemia (sAML). In a joint retrospective study of the European Society for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR) registry data from 1704 patients with secondary AML or MDS were analysed. The cohort consisted mainly of older patients (median age 61 years) with high risk disease who had received chemotherapy-based reduced intensity conditioning and anti-thymocyte globulin prior to allogeneic HCT from well-matched unrelated stem cell donors. The impact of the predictors on Overall Survival (OS) and relapse incidence was tested in Cox regression models adjusted for patient age, a modified disease risk index, performance status, donor age, HLA-match, sex-match, CMV-match, conditioning intensity, type of T-cell depletion and graft type. KIR genes were typed using high-resolution amplicon-based next generation sequencing. In univariable and multivariable analyses none of the models predicted OS and the risk of relapse consistently. Our results do not support the hypothesis that optimizing NK-mediated alloreactivity is possible by KIR-genotype informed selection of HLA-matched unrelated donors. However, in the context of allogeneic transplantation, NK-cell biology is complex and only partly understood. KIR-genes are highly diverse and current assignment of haplotype motifs based on the presence or absence of selected KIR genes is over-simplistic. As a consequence, further research is highly warranted and should integrate cutting edge knowledge on KIR genetics, and NK-cell biology into future studies focused on homogeneous groups of patients and treatment modalities.
Collapse
Affiliation(s)
- Johannes Schetelig
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | | | | | - Michelle Kuxhausen
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, University Hospital Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| | - Liesbeth C de Wreede
- DKMS Clinical Trials Unit, Dresden, Germany.,Leiden University Medical Center, Department of Biomedical Data Sciences, Leiden, Netherlands
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, United States
| | - Michel van Gelder
- Maastricht University Medical Center, Department of Internal Medicine, Maastricht, Netherlands
| | - Benedetto Bruno
- A.O.U. Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Onida
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | - Per Ljungman
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Kathy Hsu
- Memorial Sloan Kettering Cancer Center, New York & Scientific Director, CIBMTR Immunobiology Working Committee, New York City, NY, United States
| | - Alexander H Schmidt
- DKMS Clinical Trials Unit, Dresden, Germany.,DKMS Life Science Lab, Dresden, Germany
| | | | - Marie Robin
- Hopital Saint-Louis, APHP, Université de Paris, Paris, France
| |
Collapse
|
25
|
Kesmir C, Bontrop R. Immunogenetics special issue 2020: nomenclature, databases, and bioinformatics in immunogenetics. Immunogenetics 2020; 72:1-3. [PMID: 31848642 DOI: 10.1007/s00251-019-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Can Kesmir
- Theoretical Biology, Utrecht University, Utrecht, Netherlands.
| | - Ronald Bontrop
- Biomedical Primate Research Centre, Department of Comparative Genetics and Refinement, Lange Kleiweg 161, 2288 GJ, Rijswijk, Netherlands.
| |
Collapse
|