1
|
Li S, Zhou X, Chen Y, Li G, Deng Y. Precision Quantification and Rational Regulation of Protein Expression with Bicistronic Cassette for Efficient Biotin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6854-6866. [PMID: 40042090 DOI: 10.1021/acs.jafc.4c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Identifying optimal enzyme expression levels is critical for microbial cell factories, as metabolic imbalances can impede the synthesis of target products. However, current screening strategies often rely on trial-and-error approaches, which are labor-intensive and have limited applicability. Here we developed a quantitative strategy utilizing a bicistronic design (BCD) library for enzyme expression screening, requiring no more than 17 tests in two steps: expression profiling and focused selection. The BCD library encoded a 992-fold expression range, and protein abundances were quantified based on fluorescence intensities due to a strong correlation (r = 0.96). This strategy was employed to fine-tune the expression of the rate-limiting enzyme BioB in biotin synthesis, whose overexpression inhibits cell growth and biotin production. Consequently, BCD6 was identified the optimal expression strength for the overexpressed bio operon, while BCD7 was optimal for the overexpressed bio + isc operons, resulting in 1.47-fold and 3.03-fold increases in biotin titer compared to original strain. Western Blot analysis confirmed a 2.38-fold and 2.71-fold increase in BioB abundance, respectively. The pioneering application of BCD establishes it as a versatile tool for the rational tuning of enzyme expression in the construction of any microbial cell factory.
Collapse
Affiliation(s)
- Shun Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ye Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhao JR, Zuo SQ, Xiao F, Guo FZ, Chen LY, Bi K, Cheng DY, Xu ZN. Advances in biotin biosynthesis and biotechnological production in microorganisms. World J Microbiol Biotechnol 2024; 40:163. [PMID: 38613659 DOI: 10.1007/s11274-024-03971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Biotin, also known as vitamin H or B7, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin de novo is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in de novo biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.
Collapse
Affiliation(s)
- Jia-Run Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Si-Qi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng-Zhu Guo
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Lu-Yi Chen
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Yuan Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Nan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, Li G, Wang H, Fan F, Zhang X. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains. ACS Synth Biol 2023; 12:2947-2960. [PMID: 37816156 DOI: 10.1021/acssynbio.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.
Collapse
Affiliation(s)
- Lishan Gu
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Rongxin Zhang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuqian Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Yu Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Kaiyu Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jingjing Jiang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Gen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
5
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
6
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metab Eng 2020; 61:406-415. [DOI: 10.1016/j.ymben.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
8
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
9
|
Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 2016; 100:6981-90. [DOI: 10.1007/s00253-016-7700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
|
10
|
Watanasrisin W, Iwatani S, Oura T, Tomita Y, Ikushima S, Chindamporn A, Niimi M, Niimi K, Lamping E, Cannon RD, Kajiwara S. Identification and characterization ofCandida utilismultidrug efflux transporterCuCdr1p. FEMS Yeast Res 2016; 16:fow042. [DOI: 10.1093/femsyr/fow042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/12/2022] Open
|
11
|
Yang Y, Lang N, Yang G, Yang S, Jiang W, Gu Y. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metab Eng 2016; 35:121-128. [PMID: 26924180 DOI: 10.1016/j.ymben.2016.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
Abstract
An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of solventogenic clostridia, we revealed that the insufficient biosynthesis of biotin, a pivotal coenzyme for many important biological processes, is a major limiting bottleneck in this anaerobe's performance. To address this problem, we strengthened the biotin synthesis of C. acetobutylicum by overexpressing four relevant genes involved in biotin transport and biosynthesis. This strategy led to faster growth and improved the titer and productivity of acetone, butanol and ethanol (ABE solvents) of C. acetobutylicum in both biotin-containing and biotin-free media. Expressionally modulating these four genes by modifying the ribosome binding site further promoted cellular performance, achieving ABE solvent titer and productivity as high as 21.9g/L and 0.30g/L/h, respectively, in biotin-free medium; these values exceeded those of the wild-type strain by over 30%. More importantly, biotin synthesis reinforcement also conferred improved ability of C. acetobutylicum to use hexose and pentose sugars, further demonstrating the potential of this metabolic-engineering strategy in solventogenic clostridia.
Collapse
Affiliation(s)
- Yunpeng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Lang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaohua Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yang Gu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms. J Biotechnol 2015; 211:20-30. [PMID: 26150016 DOI: 10.1016/j.jbiotec.2015.06.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The yeast Cyberlindnera jadinii is a close relative of Candida utilis that is being used in the food and feed industries. Here, we present the 12.7Mb genome sequence of C. jadinii strain CBS 1600 generated by next generation sequencing. The deduced draft genome sequence consists of seven large scaffolds analogous to the seven largest chromosomes of C. utilis. An automated annotation of the C. jadinii genome identified 6147 protein-coding sequences. The level of ploidy for both genomes was analyzed by calling single nucleotide polymorphisms (SNPs) and was verified measuring nuclear DNA contents by florescence activated cell sorting (FACS). Both analyses determined the level of ploidy to diploid for C. jadinii and to triploid for C. utilis. However, SNP calling for C. jadinii also identified scaffold regions that seem to be haploid, triploid or tetraploid.
Collapse
|
13
|
Kunigo M, Buerth C, Ernst JF. Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis. Appl Microbiol Biotechnol 2015; 99:8055-64. [PMID: 26051669 DOI: 10.1007/s00253-015-6703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/06/2015] [Accepted: 05/15/2015] [Indexed: 12/30/2022]
Abstract
The fodder yeast Candida utilis is able to use xylose mono- and oligomers as sources of carbon but not the abundant polymer xylan. C. utilis transformants producing the Penicillium simplicissimum xylanase XynA were constructed using expression vectors encoding fusions of the Saccharomyces cerevisiae Mfα1 pre-pro secretion leader to XynA. The Mfα1-XynA fusion was efficiently processed in transformants and XynA was secreted almost quantitatively into the culture medium. Secreted XynA was enzymatically active and allowed transformants to grow on xylan as the sole carbon source. Addition of a second expression unit for the heterologous green fluorescent protein (GFP) generated C. utilis transformants, which showed intracellular GFP fluorescence during growth on xylan. The results suggest that xylanase-producing C. utilis is suited as a cost-effective host organism for heterologous protein production and for other biotechnical applications.
Collapse
Affiliation(s)
- Maya Kunigo
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12.01, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
14
|
Boňková H, Osadská M, Krahulec J, Lišková V, Stuchlík S, Turňa J. Upstream regulatory regions controlling the expression of the Candida utilis maltase gene. J Biotechnol 2014; 189:136-42. [DOI: 10.1016/j.jbiotec.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
15
|
Pinheiro R, Lopes M, Belo I, Mota M. Candida utilis metabolism and morphology under increased air pressure up to 12bar. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Kunigo M, Buerth C, Tielker D, Ernst JF. Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 2013; 97:7357-68. [PMID: 23613034 DOI: 10.1007/s00253-013-4890-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Abstract
The yeast Candida utilis (also referred to as Torula) is used as a whole-cell food additive and as a recombinant host for production of intracellular molecules. Here, we report recombinant C. utilis strains secreting significant amounts of Candida antarctica lipase B (CalB). Native and heterologous secretion signals led to secretion of CalB into the growth medium; CalB was enzymatically active and it carried a short N-glycosyl chain lacking extensive mannosylation. Furthermore, CalB fusions to the C. utilis Gas1 cell wall protein led to effective surface display of enzymatically active CalB and of β-galactosidase. Secretory production in C. utilis was achieved using a novel set of expression vectors containing sat1 conferring nourseothricin resistance, which could be transformed into C. utilis, Pichia jadinii, Candida albicans, and Saccharomyces cerevisiae; C. utilis promoters including the constitutive TDH3 and the highly xylose-inducible GXS1 promoters allowed efficient gene expression. These results establish C. utilis as a promising host for the secretory production of proteins.
Collapse
Affiliation(s)
- Maya Kunigo
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12.01, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
17
|
Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D. Growth-dependent secretome of Candida utilis. MICROBIOLOGY-SGM 2011; 157:2493-2503. [PMID: 21680638 DOI: 10.1099/mic.0.049320-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, the food yeast Candida utilis has emerged as an excellent host for production of heterologous proteins. Since secretion of the recombinant product is advantageous for its purification, we characterized the secreted proteome of C. utilis. Cells were cultivated to the exponential or stationary growth phase, and the proteins in the medium were identified by MS. In parallel, a draft genome sequence of C. utilis strain DSM 2361 was determined by massively parallel sequencing. Comparisons of protein and coding sequences established that C. utilis is not a member of the CUG clade of Candida species. In total, we identified 37 proteins in the culture solution, 17 of which were exclusively present in the stationary phase, whereas three proteins were specific to the exponential growth phase. Identified proteins represented mostly carbohydrate-active enzymes associated with cell wall organization, while no proteolytic enzymes and only a few cytoplasmic proteins were detected. Remarkably, cultivation in xylose-based medium generated a protein pattern that diverged significantly from glucose-grown cells, containing the invertase Inv1 as the major extracellular protein, particularly in its highly glycosylated S-form (slow-migrating). Furthermore, cultivation without ammonium sulfate induced the secretion of the asparaginase Asp3. Comparisons of the secretome of C. utilis with those of Kluyveromyces lactis and Pichia pastoris, as well as with those of the human fungal pathogens Candida albicans and Candida glabrata, revealed a conserved set of 10 and six secretory proteins, respectively.
Collapse
Affiliation(s)
- Christoph Buerth
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Clemens J Heilmann
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joachim F Ernst
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Denis Tielker
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Wei W, Hong-Lan Y, HuiFang B, Daoyuan Z, Qi-mu-ge S, Wood AJ. The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. Mol Biol Rep 2009; 37:2615-20. [DOI: 10.1007/s11033-009-9786-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283-319. [PMID: 21261849 PMCID: PMC3815394 DOI: 10.1111/j.1751-7915.2007.00015.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022] Open
Abstract
Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.
Collapse
Affiliation(s)
- Sergio Sanchez
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA
| |
Collapse
|
20
|
Abstract
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
21
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|