1
|
Zhao C, Feng XL, Wang ZX, Qi J. The First Whole Genome Sequencing of Agaricus bitorquis and Its Metabolite Profiling. J Fungi (Basel) 2023; 9:jof9040485. [PMID: 37108939 PMCID: PMC10142948 DOI: 10.3390/jof9040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Agaricus bitorquis, an emerging wild mushroom with remarkable biological activities and a distinctive oversized mushroom shape, has gained increasing attention in recent years. Despite its status as an important resource of wild edible fungi, knowledge about this mushroom is still limited. In this study, we used the Illumina NovaSeq and Nanopore PromethION platforms to sequence, de novo assemble, and annotate the whole genome and mitochondrial genome (mitogenome) of the A. bitorquis strain BH01 isolated from Bosten Lake, Xinjiang Province, China. Using the genome-based biological information, we identified candidate genes associated with mating type and carbohydrate-active enzymes in A. bitorquis. Cluster analysis based on P450 of basidiomycetes revealed the types of P450 members of A. bitorquis. Comparative genomic, mitogenomic, and phylogenetic analyses were also performed, revealing interspecific differences and evolutionary features of A. bitorquis and A. bisporus. In addition, the molecular network of metabolites was investigated, highlighting differences in the chemical composition and content of the fruiting bodies of A. bitorquis and A. bisporus. The genome sequencing provides a comprehensive understanding and knowledge of A. bitorquis and the genus Agaricus mushrooms. This work provides valuable insights into the potential for artificial cultivation and molecular breeding of A. bitorquis, which will facilitate the development of A. bitorquis in the field of edible mushrooms and functional food manufacture.
Collapse
Affiliation(s)
- Chunhua Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
2
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
3
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Proteomic investigation of interhyphal interactions between strains of Agaricus bisporus. Fungal Biol 2020; 124:579-591. [PMID: 32448449 DOI: 10.1016/j.funbio.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Hyphae of filamentous fungi undergo polar extension, bifurcation and hyphal fusion to form reticulating networks of mycelia. Hyphal fusion or anastomosis, a ubiquitous process among filamentous fungi, is a vital strategy for how fungi expand over their substrate and interact with or recognise self- and non-self hyphae of neighbouring mycelia in their environment. Morphological and genetic characterisation of anastomosis has been studied in many model fungal species, but little is known of the direct proteomic response of two interacting fungal isolates. Agaricus bisporus, the most widely cultivated edible mushroom crop worldwide, was used as an in vitro model to profile the proteomes of interacting cultures. The globally cultivated strain (A15) was paired with two distinct strains; a commercial hybrid strain and a wild isolate strain. Each co-culture presented a different interaction ranging from complete vegetative compatibility (self), lack of interactions, and antagonistic interactions. These incompatible strains are the focus of research into disease-resistance in commercial crops as the spread of intracellular pathogens, namely mycoviruses, is limited by the lack of interhyphal anastomosis. Unique proteomic responses were detected between all co-cultures. An array of cell wall modifying enzymes, plus fungal growth and morphogenesis proteins were found in significantly (P < 0.05) altered abundances. Nitrogen metabolism dominated in the intracellular proteome, with evidence of nitrogen starvation between competing, non-compatible cultures. Changes in key enzymes of A. bisporus morphogenesis were observed, particularly via increased abundance of glucanosyltransferase in competing interactions and certain chitinases in vegetative compatible interactions only. Carbohydrate-active enzyme arsenals are expanded in antagonistic interactions in A. bisporus. Pathways involved in carbohydrate metabolism and genetic information processing were higher in interacting cultures, most notably during self-recognition. New insights into the differential response of interacting strains of A. bisporus will enhance our understanding of potential barriers to viral transmission through vegetative incompatibility. Our results suggest that a differential proteomic response occurs between A. bisporus at strain-level and findings from this work may guide future proteomic investigation of fungal anastomosis.
Collapse
|
5
|
Integrated Metabolomics and Transcriptomics Unravel the Metabolic Pathway Variations for Different Sized Beech Mushrooms. Int J Mol Sci 2019; 20:ijms20236007. [PMID: 31795288 PMCID: PMC6928633 DOI: 10.3390/ijms20236007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022] Open
Abstract
Beech mushrooms (Hypsizygus marmoreus) are largely relished for their characteristic earthy flavor, chewy-texture, and gustatory and nutritional properties in East Asian societies. Intriguingly, the aforementioned properties of beech mushroom can be subsumed under its elusive metabolome and subtle transcriptome regulating its various stages of growth and development. Herein, we carried out an integrated metabolomic and transcriptomic profiling for different sized beech mushrooms across spatial components (cap and stipe) to delineate their signature pathways. We observed that metabolite profiles and differentially expressed gene (DEGs) displayed marked synergy for specific signature pathways according to mushroom sizes. Notably, the amino acid, nucleotide, and terpenoid metabolism-related metabolites and genes were more abundant in small-sized mushrooms. On the other hand, the relative levels of carbohydrates and TCA intermediate metabolites as well as corresponding genes were linearly increased with mushroom size. However, the composition of flavor-related metabolites was varying in different sized beech mushrooms. Our study explores the signature pathways associated with growth, development, nutritional, functional and organoleptic properties of different sized beech mushrooms.
Collapse
|
6
|
Grawunder A, Gube M. Element distribution in fruiting bodies of Lactarius pubescens with focus on rare earth elements. CHEMOSPHERE 2018; 208:614-625. [PMID: 29894963 DOI: 10.1016/j.chemosphere.2018.05.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
During growth and senescence, fungal fruiting bodies accumulate essential and non-essential elements to different extent in their compartments. This study bases on a dataset of 32 basidiocarps of the ectomycorrhizal Lactarius pubescens sampled in a former U mining area. Statistical analyses were combined with rare earth element (REE, La-Lu) patterns to study the element distribution within sporocarp compartments and between three different age classes. For this purpose, fruiting bodies were separated into stipe, pileus trama, pileipelles and lamellae, dried and digested with HNO3. While macronutrient (e.g. K, Mg, P, S) contents resemble those of a non-mining affected site, several elements (e.g. Co, Mn) were site-specifically taken up relative to elevated soil contents. With statistics, two main element distribution groups for L. pubescens were revealed: mainly essential (Cu, Mg, Mn, P, S, Zn, Cd, Co, Ni) and mainly non-essential elements (Al, Ca, Fe, Sr, U, REE). The highest REE contents were found in pileipelles and lamellae, corresponding to relatively small cell sizes. Stipes and pileus trama had low REE contents due to their function as transport systems. During growth, light REE (La-Nd) were strongly enriched in lamellae and pileipelles. Middle REE (Sm-Dy) enrichment was found both in soil and fungal biomass. Contents of nutrients decrease with age, while non-essential elements are enriched especially in pileipelles and lamellae. A weak positive Ce anomaly appeared in the bioavailable soil fraction and in the pileipelles of younger individuals. Substrate dependent uptake thus gets reduced with sporocarp senescence, possibly due to redistribution.
Collapse
Affiliation(s)
- Anja Grawunder
- Institute of Geosciences, Friedrich Schiller University of Jena, Burgweg 11, 07749 Jena, Germany
| | - Matthias Gube
- Institute of Microbiology, Friedrich Schiller University of Jena, Neugasse 25, 07743 Jena, Germany; Soil Science of Temperate Ecosystems, Georg-August-Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
iTRAQ-MS/MS Proteomic Analysis Reveals Differentially Expressed Proteins During Post-harvest Maturation of the White Button Mushroom Agaricus bisporus. Curr Microbiol 2017; 74:641-649. [DOI: 10.1007/s00284-017-1225-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
|
9
|
Liu T, Li H, Ding Y, Qi Y, Gao Y, Song A, Shen J, Qiu L. Genome-wide gene expression patterns in dikaryon of the basidiomycete fungus Pleurotus ostreatus. Braz J Microbiol 2017; 48:380-390. [PMID: 28089161 PMCID: PMC5470450 DOI: 10.1016/j.bjm.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
Dikarya is a subkingdom of fungi that includes Ascomycota and Basidiomycota. The gene expression patterns of dikaryon are poorly understood. In this study, we bred a dikaryon DK13×3 by mating monokaryons MK13 and MK3, which were from the basidiospores of Pleurotus ostreatus TD300. Using RNA-Seq, we obtained the transcriptomes of the three strains. We found that the total transcript numbers in the transcriptomes of the three strains were all more than ten thousand, and the expression profile in DK13×3 was more similar to MK13 than MK3. However, the genes involved in macromolecule utilization, cellular material synthesis, stress-resistance and signal transduction were much more up-regulated in the dikaryon than its constituent monokaryons. All possible modes of differential gene expression, when compared to constituent monokaryons, including the presence/absence variation, and additivity/nonadditivity gene expression in the dikaryon may contribute to heterosis. By sequencing the urease gene poure sequences and mRNA sequences, we identified the monoallelic expression of the poure gene in the dikaryon, and its transcript was from the parental monokaryon MK13. Furthermore, we discovered RNA editing in the poure gene mRNA of the three strains. These results suggest that the gene expression patterns in dikaryons should be similar to that of diploids during vegetative growth.
Collapse
Affiliation(s)
- Tianxiang Liu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Huiru Li
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yatong Ding
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuancheng Qi
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuqian Gao
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Andong Song
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Jinwen Shen
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Liyou Qiu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China.
| |
Collapse
|
10
|
Eastwood DC, Herman B, Noble R, Dobrovin-Pennington A, Sreenivasaprasad S, Burton KS. Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO₂. Fungal Genet Biol 2013; 55:54-66. [PMID: 23354075 DOI: 10.1016/j.fgb.2013.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/03/2012] [Accepted: 01/01/2013] [Indexed: 11/25/2022]
Abstract
Reproductive phase change from vegetative mycelium to the initiation of fruiting in Agaricus bisporus is regulated in large part by the sensing of environmental conditions. A model is proposed in which three separate environmental factors exert control at different stages of the reproductive developmental process change. The eight carbon volatile 1-octen-3-ol controls the early differentiation from vegetative hyphae to multicellular knots; temperature reduction is essential for the later differentiation of primodia; and carbon dioxide level exerts quantitative control on the number of fruiting bodies developed. Analysis of transcriptomic changes during the reproductive phase change was carried out with initiation-specific microarrays, and the newly published A. bisporus genome was used to analyse the promoter regions of differentially regulated genes. Our studies have shown there to be both early and late initiation responses relating to sensing of eight carbon volatiles and temperature respectively. A subset of 45 genes was transcriptionally regulated during the reproductive phase change which exhibited a range of functions including cell structure, nitrogen and carbon metabolism, and sensing and signalling. Three gene clusters linking increased transcription with developmental stage were identified. Analysis of promoter regions revealed cluster-specific conserved motifs indicative of co-ordinated regulation of transcription.
Collapse
Affiliation(s)
- Daniel C Eastwood
- Department of Bioscience, University of Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
11
|
Eastwood DC, Challen MP, Zhang C, Jenkins H, Henderson J, Burton KS. Hairpin-mediated down-regulation of the urea cycle enzyme argininosuccinate lyase in Agaricus bisporus. ACTA ACUST UNITED AC 2008; 112:708-16. [PMID: 18499425 DOI: 10.1016/j.mycres.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/18/2007] [Accepted: 01/24/2008] [Indexed: 11/27/2022]
Abstract
A double-stranded (ds) RNA hairpin-mediated down-regulation system was developed for the cultivated mushroom Agaricus bisporus, and the role of the urea cycle enzyme argininosuccinate lyase (asl) in mushroom post-harvest development was investigated. Hairpin expression vectors were constructed to initiate down-regulation of asl and introduced into A. bisporus by Agrobacterium tumefaciens-mediated transformation. Transcripts of asl were significantly reduced (93.1 and 99.9%) in two transformants and hairpin vector transgene sequences were maintained throughout sporophore development. Single and multiple hairpin integration events were observed in Southern analysis. Transformants with down-regulated asl exhibited reduced yield and cap expansion during post-harvest sporophore development. There were no detectable differences in urea levels between the hairpin-transformed and control strains. This is the first report of reduced gene expression resulting from the introduction of dsRNA hairpins in A. bisporus and the applications of this technology will facilitate functional studies in the mushroom.
Collapse
|
12
|
Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. A gene repertoire for nitrogen transporters in Laccaria bicolor. THE NEW PHYTOLOGIST 2008; 180:343-364. [PMID: 18665901 DOI: 10.1111/j.1469-8137.2008.02580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhizal interactions established between the root systems of terrestrial plants and hyphae from soil-borne fungi are the most ecologically widespread plant symbioses. The efficient uptake of a broad range of nitrogen (N) compounds by the fungal symbiont and their further transfer to the host plant is a major feature of this symbiosis. Nevertheless, we far from understand which N form is preferentially transferred and what are the key molecular determinants required for this transfer. Exhaustive in silico analysis of N-compound transporter families were performed within the genome of the ectomycorrhizal model fungus Laccaria bicolor. A broad phylogenetic approach was undertaken for all families and gene regulation was investigated using whole-genome expression arrays. A repertoire of proteins involved in the transport of N compounds in L. bicolor was established that revealed the presence of at least 128 gene models in the genome of L. bicolor. Phylogenetic comparisons with other basidiomycete genomes highlighted the remarkable expansion of some families. Whole-genome expression arrays indicate that 92% of these gene models showed detectable transcript levels. This work represents a major advance in the establishment of a transportome blueprint at a symbiotic interface, which will guide future experiments.
Collapse
Affiliation(s)
- Eva Lucic
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Claire Fourrey
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annegret Kohler
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Francis Martin
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Michel Chalot
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annick Brun-Jacob
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
13
|
Petrova A, Alipieva K, Kostadinova E, Antonova D, Lacheva M, Gjosheva M, Popov S, Bankova V. GC-MS studies of the chemical composition of two inedible mushrooms of the genus Agaricus. Chem Cent J 2007; 1:33. [PMID: 18096035 PMCID: PMC2228291 DOI: 10.1186/1752-153x-1-33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/20/2007] [Indexed: 11/16/2022] Open
Abstract
Background Mushrooms in the genus Agaricus have worldwide distribution and include the economically important species A. bisporus. Some Agaricus species are inedible, including A. placomyces and A. pseudopratensis, which are similar in appearance to certain edible species, yet are known to possess unpleasant odours and induce gastrointestinal problems if consumed. We have studied the chemical composition of these mushrooms using GC-MS. Results Our GC-MS studies on the volatile fractions and butanol extracts resulted in the identification of 44 and 34 compounds for A. placomyces and A. pseudopratensis, respectively, including fatty acids and their esters, amino acids, and sugar alcohols. The most abundant constituent in the volatiles and butanol were phenol and urea respectively. We also identified the presence of ergosterol and two Δ7-sterols. In addition, 5α,8α-Epidioxi-24(ξ)-methylcholesta-6,22-diene-3β-ol was isolated for the first time from both mushrooms. Our study is therefore the first report on the chemical composition of these two species. Conclusion The results obtained contribute to the knowledge of the chemical composition of mushrooms belonging to the Agaricus genus, and provide some explanation for the reported mild toxicity of A. placomyces and A. pseudopratensis, a phenonomenon that can be explained by a high phenol content, similar to that found in other Xanthodermatei species.
Collapse
Affiliation(s)
- Assya Petrova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wagemaker MJM, Eastwood DC, Welagen J, van der Drift C, Jetten MSM, Burton K, Van Griensven LJLD, Op den Camp HJM. The role of ornithine aminotransferase in fruiting body formation of the mushroom Agaricus bisporus. ACTA ACUST UNITED AC 2007; 111:909-18. [PMID: 17703933 DOI: 10.1016/j.mycres.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The complete oat gene and cDNA from the commercial mushroom, Agaricus bisporus, encoding ornithine aminotransferase (OAT) was characterized. The gene encodes a 466 amino acid protein and provides the first fully reported homobasidiomycete OAT protein sequence. The gene is interrupted by ten introns, and no mitochondrial targeting motif was present pointing to a cytoplasmic localization. The function of the gene was demonstrated by complementation of a Saccharomyces cerevisiae mutant unable to utilize ornithine as a sole source of nitrogen with an A. bisporus oat cDNA construct. Northern analysis of the oat gene together with the pruA gene (encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase) showed that transcripts of both genes were lower during the first stages of fruiting body development. The higher expression of the oat gene in later stages of development, suggests the importance of ornithine metabolism for the redistribution of metabolites in the developing mushroom. Hplc analysis of all amino acids revealed that ornithine levels increased during fruiting body development whereas proline levels fell.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wagemaker MJM, Eastwood DC, van der Drift C, Jetten MSM, Burton K, Van Griensven LJLD, Op den Camp HJM. Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus. ACTA ACUST UNITED AC 2007; 111:493-502. [PMID: 17512708 DOI: 10.1016/j.mycres.2007.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/16/2007] [Accepted: 01/24/2007] [Indexed: 11/19/2022]
Abstract
Accumulation of high quantities of urea in fruiting bodies is a known feature of larger basidiomycetes. Argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) are two ornithine cycle enzymes catalysing the last two steps in the arginine biosynthetic pathway. Arginine is the main precursor for urea formation. In this work the nucleotide sequences of the genes and corresponding cDNAs encoding argininosuccinate synthetase (ass) and argininosuccinate lyase (asl) from Agaricus bisporus were determined. Eight and six introns were present in the ass and asl gene, respectively. The location of four introns in the asl gene were conserved among vertebrate asl genes. Deduced amino acid sequences, representing the first homobasidiomycete ASS and ASL protein sequences, were analysed and compared with their counterparts in other organisms. The ass ORF encoded for a protein of 425 amino acids with a calculated molecular mass of 47266Da. An alignment with ASS proteins from other organisms revealed high similarity with fungal and mammalian ASS proteins, 61-63% and 51-55% identity, respectively. The asl open reading frame (ORF) encoded a protein of 464 amino acids with an calculated mass of 52337Da and similar to ASS shared the highest similarity with fungal ASL proteins, 59-60% identity. Northern analyses of ass and asl during fruiting body formation and post-harvest development revealed that expression was significantly up-regulated from developmental stage 3 on for all the tissues studied. The expression reached a maximum at the later stages of fruiting body growth, stages 6 and 7. Both ass and asl genes were up-regulated within 3h after harvest showing that the induction mechanism is very sensitive to the harvest event and emphasizes the importance of the arginine biosynthetic pathway/ornithine cycle in post-harvest physiology.
Collapse
Affiliation(s)
- Matthijs J M Wagemaker
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|