1
|
Pascual C, Antolín D, Cantera S, Muñoz R, Lebrero R. Assessing the impact of packaging materials on anoxic biotrickling filtration of siloxanes in biogas: Effectiveness of activated carbon in removal performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122862. [PMID: 39405881 DOI: 10.1016/j.jenvman.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Siloxanes (VMS) represent a class of organosilicon compounds known for their adverse effects on both the environment and human health. Their presence in biogas significantly hinders its economic valorisation, highlighting the need for effective treatment methods. This study investigates the performance of three different packing materials in the anoxic biofiltration of VMS (L2, L3, D4 and D5). The materials evaluated included plastic rings (BTF-1), polyurethane foam (BTF-2) and plastic rings combined with activated carbon (80:20) (BTF-3). Among them, BTF-3 exhibited superior performance, achieving maximum VMS removal efficiencies (REs) of 90%, including the complete elimination of L3 and D4, and ∼80% removal of D5, attributed to the presence of activated carbon. However, the abatement of L2 was inferior to that of other VMS (<80%), which was attributed to the activated carbon's affinity for larger molecular weights and critical diameters. In contrast, BTF-1 and BTF-2 supported maximum VMS removals of 40%. Notably, neither increasing the trickling liquid velocity from 2 to 4.5 m h⁻1 nor adding Fe-carbon nanoparticles to the solution had any impact on the BTFs' performance. Following the successful results observed in BTF-3, gas residence time was reduced from 60 to 42 min, consequently leading to an increase in the EC from 366 to 509 mg m-3 h-1 (corresponding to an RE = 87%). Despite the different performance of the BTFs, comparable bacterial communities were identified, dominated by the genera Thermomonas, Corynebacterium, Aquimonas, Thauera and Parvibaculum. The results obtained in this study highlighted the potential of activated carbon as packing material for enhancing abatement performance during biotrickling filtration and identified new bacterial genera with potential for VMS degradation.
Collapse
Affiliation(s)
- Celia Pascual
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - David Antolín
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Sara Cantera
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
| |
Collapse
|
2
|
Merouani EFO, Ferdowsi M, Buelna G, Jones JP, Benyoussef EH, Malhautier L, Heitz M. Exploring the potential of biofiltration for mitigating harmful gaseous emissions from small or old landfills: a review. Biodegradation 2024; 35:469-491. [PMID: 38748305 DOI: 10.1007/s10532-024-10082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/13/2024] [Indexed: 07/14/2024]
Abstract
Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.
Collapse
Affiliation(s)
- El Farouk Omar Merouani
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - El-Hadi Benyoussef
- Laboratoire de Valorisation des Énergies Fossiles, École Nationale Polytechnique, 10 Avenue Hassan Badi El Harrach, BP182, 16200, Algiers, Algeria
| | - Luc Malhautier
- Laboratoire des Sciences des Risques, IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
3
|
Guzmán-Beltrán AM, Vela-Aparicio D, Montero S, Cabeza IO, Brandão PFB. Simultaneous biofiltration of H 2S, NH 3, and toluene using compost made of chicken manure and sugarcane bagasse as packing material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33757-1. [PMID: 38918297 DOI: 10.1007/s11356-024-33757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Offensive odors from wastewater treatment plants (WWTP) are caused by volatile inorganic compounds such as hydrogen sulfide and ammonia and volatile organic compounds (VOCs), such as toluene. To treat these pollutants, biofiltration is an effective and economical technology used worldwide due to its low investment and environmental impact. In this work, a laboratory-scale prototype biofilter unit for the simultaneous biofiltration of hydrogen sulfide, ammonia, and toluene was evaluated by simulating the emission concentrations of the El Salitre WWTP Bogotá, Colombia, using a compost of chicken manure and sugarcane bagasse as packing material for the biofilter. The prototype biofilter unit was set to an operation flow rate of 0.089 m3/h, an empty bed residence time (EBRT) of 60 s, and a volume of 0.007 m3 (6.6 L). The maximum removal efficiency were 96.9 ± 1.2% for H2S, at a loading rate of 4.7 g/m3 h and a concentration of 79.1 mg/m3, 68 ± 2% for NH3, at a loading rate of 1.2 g/m3 h and a concentration of 2.0 mg/m3, and 71.5 ± 4.0% for toluene, at a loading rate of 1.32 g/m3 h and a concentration of 2.3 mg/m3. The removal efficiency of the three compounds decreased when the toluene concentration was increased above 40 mg/m3. However, a recovery of the system was observed after reducing the toluene concentration and after 7 days of inactivity, indicating an inhibitory effect of toluene. These results demonstrate the potential use of the prototype biofilter unit for odor treatment in a WWTP.
Collapse
Affiliation(s)
- Ana María Guzmán-Beltrán
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería - Departamento de Ingeniería Química y Ambiental, Av. Carrera 30 #45-03, 111321, Bogotá D.C., Colombia
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química - Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 #45-03, 111321, Bogotá D.C., Colombia
| | - Diana Vela-Aparicio
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química - Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 #45-03, 111321, Bogotá D.C., Colombia
| | - Sergio Montero
- Universidad Santo Tomás - Facultad de Ingeniería Ambiental - INAM-USTA, Carrera 9#51-11, Bogotá D.C., Colombia
| | - Iván O Cabeza
- Universidad de la Sabana - Facultad de Ingeniería, Laboratorio de Energía, Materiales y Ambiente, Campus Universitario Puente del Común, Km. 7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
| | - Pedro F B Brandão
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química - Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA), Av. Carrera 30 #45-03, 111321, Bogotá D.C., Colombia
| |
Collapse
|
4
|
Paluszak Z, Kanarek P, Gryń G, Breza-Boruta B. Deodorizing bacterial consortium: community analysis of biofilms and leachate water collected from an air biofiltration system in a piggery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18993-19001. [PMID: 38353818 DOI: 10.1007/s11356-024-32223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Intensive livestock production is a source of water, soil, and air contamination. The first aspect that negatively affects the quality of life of residents in the vicinity of piggeries is malodorous aerosols, which are not only responsible for discomfort but can be an etiological factor in the development of various diseases during prolonged exposure. One of the proven and efficient ways to counteract odor emissions is the usage of air biofiltration. The purpose of this study was to qualitatively analyze the bacterial community colonizing the biofilm of a biofilter operating at an industrial piggery in Switzerland. The study material consisted of biofilm and leachate water samples. The microbiological analysis consisted of DNA isolation, amplification of the bacterial 16S rRNA gene fragment (V3-V4), preparation of a library for high-throughput sequencing, high-throughput NGS sequencing, filtering of the obtained sequencing reads, and evaluation of the species composition in the studied samples. The investigation revealed the presence of the following bacterial genera: Pseudochelatococcus, Methyloversatilis, Flexilinea, Deviosia, Chryseobacterium, Kribbia, Leadbetterella, Corynebacterium, Flavobacterium, Xantobacter, Tessaracoccus, Staphylococcus, Thiobacillus, Enhydrobacter, Proteiniclasticum, and Giesbergeria. Analysis of the microbial composition of biofilters provides the opportunity to improve the biofiltration process.
Collapse
Affiliation(s)
- Zbigniew Paluszak
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029, Bydgoszcz, Poland
| | - Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029, Bydgoszcz, Poland.
| | - Grzegorz Gryń
- Plant Breeding and Acclimatization Institute - National Research Institute, Al. Powstańców Wlkp. 10, 85-090, Bydgoszcz, Poland
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029, Bydgoszcz, Poland
| |
Collapse
|
5
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
6
|
Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilters (BFs) and biotrickling filters (BTFs) are two types of bioreactors used for treatment of volatile organic compounds (VOCs). Both BFs and BTFs use packing materials in which various microorganisms are immobilised. The water phase in BFs is stationary and used to maintain the humidity of packing materials, while BTFs have a mobile liquid phase. Optimisation of irrigation of packing materials is crucial for effective performance of BFs and BTFs. A literature review is presented on the influence of water content of packing materials on the biofiltration efficiency of various pollutants. Different configurations of BFs and BTFs and their influence on moisture distribution in packing materials were discussed. The review also presents various packing materials and their irrigation control strategies applied in recent biofiltration studies. The sources of this review included recent research articles from scientific journals and several review articles discussing BFs and BTFs.
Collapse
|
7
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
8
|
Das J, Ravishankar H, Lens PNL. Biological biogas purification: Recent developments, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114198. [PMID: 34864410 DOI: 10.1016/j.jenvman.2021.114198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Raw biogas generated in the anaerobic digestion (AD) process contains several undesired constituents such as H2S, CO2, NH3, siloxanes and VOCs. These gases affect the direct application of biogas, and are a prime concern in biogas utilization processes. Conventional physico-chemical biogas purification methods are energy-intensive and expensive. To promote sustainable development and environmental friendly technologies, biological biogas purification technologies can be applied. This review describes biological technologies for both upstream and downstream processing in terms of pollutant removal mechanisms and efficiency, bioreactor configurations and different operating conditions. Limitations of the biological approaches and their future scope are also highlighted. A conceptual framework Driver-Pressure-Stress-Impact-Response (DPSIR) and Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis have been applied to analyse the present situation and future scope of biological biogas clean-up technologies.
Collapse
Affiliation(s)
- Jewel Das
- National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland; Bangladesh Council of Scientific and Industrial Research (BCSIR), BCSIR Laboratories Chattogram, Chattogram, 4220, Bangladesh.
| | - Harish Ravishankar
- National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
9
|
Malhautier L, Rocher J, Gouello O, Jobert L, Moura C, Gauthier Y, Bertin A, Després JF, Fanlo JL. Treatment of gaseous emissions from tire manufacturing industry using lab-scale biofiltration pilot units. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126614. [PMID: 34284284 DOI: 10.1016/j.jhazmat.2021.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Continuously seeking the improvement of environmental protection, the limitation of exhaust emissions is of significance for the tire manufacturing industry. The aim of this study is to assess the potential of biofiltration for the treatment of such gaseous emissions. This work highlights that biofiltration is able to remove both hydrophilic and hydrophobic compounds within a single pilot unit of biofiltration. Due to Ethanol/Alkanes ratios (95/5 and 80/20), high performance levels were observed for low EBRT (16 and 12 s). After twenty days of stable running, the dynamic of stratification patterns could be explained as a result of species coexistence mechanisms. While its impact on performance has not been observed under stable operating conditions, the use of an adsorbent support such as granular activated carbon (GAC) could be relevant to promote system stability in the face of further perturbations, such as transient regimes, that are problematic in full-scale industrial applications.
Collapse
Affiliation(s)
- Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France.
| | - Janick Rocher
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France
| | - Olivia Gouello
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| | - Luc Jobert
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Claire Moura
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Yann Gauthier
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Aline Bertin
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | | | - Jean-Louis Fanlo
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| |
Collapse
|
10
|
Khabiri B, Ferdowsi M, Buelna G, Jones JP, Heitz M. Bioelimination of low methane concentrations emitted from wastewater treatment plants: a review. Crit Rev Biotechnol 2021; 42:450-467. [PMID: 34261394 DOI: 10.1080/07388551.2021.1940830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sewage from residents and industries is collected and transported to wastewater treatment plants (WWTPs) with sewer networks. The operation of WWTPs results in emissions of greenhouse gases, such as methane (CH4), mostly due to sludge anaerobic digestion. Amounts of emissions depend on the source of influent, i.e. municipal and industrial wastewater as well as sewer systems (gravity and rising). Wastewater is the fifth-largest source of anthropogenic CH4 emissions in the world and represents 7-9% of total global CH4 emissions into the atmosphere. Global wastewater CH4 emission grew by approximately 20% from 2005 to 2020 and is expected to grow by 8% between 2020 and 2030, which makes wastewater an important CH4 emitter worldwide. This review initially considers the emission of CH4 from WWTPs and sewer networks. In the second part, biotechniques available for biodegradation of low CH4 concentrations (<5% v/v) encountered in WWTPs have been studied. The paper reviews major bioreactor configurations for the treatment of polluted air, i.e. biotrickling filters, bioscrubbers, two-liquid phase bioreactors, biofilters, and hybrid reactor configurations, after which it focuses on CH4 biofiltration systems. Biofiltration represents a simple and efficient approach to bio-oxidize CH4 in waste gases from WWTPs. Major factors influencing a biofilter's performance along with knowledge gaps in relation to its application for treating gaseous emissions from WWTPs are discussed.
Collapse
Affiliation(s)
- Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
11
|
Lusinier N, Couriol C, Cloirec PL. Proposed mechanisms of toluene removal by vermicompost and earthworms Eisenia fetida. ENVIRONMENTAL TECHNOLOGY 2020; 41:3023-3031. [PMID: 30874480 DOI: 10.1080/09593330.2019.1595164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
For potential use in air treatment by biofiltration, a new material composed of vermicompost and earthworms (Eisenia fetida) was tested for the removal of a volatile organic compound (VOC), toluene. The removal rate of toluene was measured during batch experiments in presence of vermicompost only, earthworms only and a mixture of both. In the chosen experimental conditions, no mortality of earthworms was recorded and the results showed that the presence of earthworms allowed an increase in toluene removal rate (0.213 mg h-1) compared to vermicompost only (0.084 mg h-1) and earthworms only (0.136 mg h-1). From the experimental data, mechanisms of toluene transfer and adsorption/biodegradation by microorganisms from vermicompost and/or earthworms were proposed.
Collapse
Affiliation(s)
- Nicolas Lusinier
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes Cedex 7, France
| | | | - Pierre Le Cloirec
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes Cedex 7, France
| |
Collapse
|
12
|
Khabiri B, Ferdowsi M, Buelna G, Jones JP, Heitz M. Simultaneous biodegradation of methane and styrene in biofilters packed with inorganic supports: Experimental and macrokinetic study. CHEMOSPHERE 2020; 252:126492. [PMID: 32443260 DOI: 10.1016/j.chemosphere.2020.126492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Four upflow 0.018 m3 biofilters (3 beds), B-ME, B-200, B-500 and B-700, all packed with inorganic materials, were operated at a constant air flow rate of 0.18 m3 h-1 to eliminate methane (CH4), a harmful greenhouse gas (GHG), and styrene (C8H8), a carcinogenic volatile organic compound (VOC). The biofilters were irrigated with 0.001 m3 of recycled nutrient solution (NS) every day (flow rate of 60 × 10-3 m3 h-1). Styrene inlet load (IL) was kept constant in each biofilter. Different CH4-ILs varying in the range of 7-60 gCH4 m-3 h-1 were examined in B-ME (IL of 0 gC8H8 m-3 h-1), B-200 (IL of 9 gC8H8 m-3 h-1), B-500 (IL of 22 gC8H8 m-3 h-1) and B-700 (IL of 32 gC8H8 m-3 h-1). Finally, the effect of C8H8 on the macrokinetic parameters of CH4 biofiltration was studied based on the Michaelis-Menten model. Average C8H8 removal efficiencies (RE) varying between 64 and 100% were obtained at CH4-ILs increasing from 7 to 60 gCH4 m-3 h-1 and for C8H8-ILs range of 0-32 gC8H8 m-3 h-1. More than 90% of C8H8 was removed in the bottom and middle beds of the biofilters. By increasing C8H8-IL from 0 to 32 gC8H8 m-3 h-1, maximal EC in Michaelis-Menten model and macrokinetic saturation constant declined from 311 to 39 g m-3 h-1 and from 19 to 2.3 g m-3, respectively, which confirmed that an uncompetitive inhibition occurred during CH4 biofiltration in the presence of C8H8.
Collapse
Affiliation(s)
- Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, 2500 boulevard de l'Université, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebec, Canada
| | - Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, 2500 boulevard de l'Université, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, 2500 boulevard de l'Université, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, 2500 boulevard de l'Université, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, 2500 boulevard de l'Université, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebec, Canada.
| |
Collapse
|
13
|
Brito J, Valle A, Almenglo F, Ramírez M, Cantero D. Characterization of eubacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) and Next Generation Sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. N Biotechnol 2020; 57:67-75. [PMID: 32360635 DOI: 10.1016/j.nbt.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
Anoxic biotrickling filters (BTFs) represent a technology with high H2S elimination capacity and removal efficiencies widely studied for biogas desulfurization. Three changes in the final electron acceptors were made using nitrate and nitrite during an operating period of 520 days. The stability and performance of the anoxic BTF were maintained when a significant perturbation was applied to the system that involved the progressive change of nitrate to nitrite and vice versa. Here the impact of electron acceptor changes on the microbial community was characterized by denaturing gel gradient electrophoresis (DGGE) and next generation sequencing (NGS). Both platforms revealed that the community underwent changes during the perturbations but was resilient because the removal capacity did not significantly change. Proteobacteria and Bacteroidetes were the main Phyla and Sulfurimonas and Thiobacillus the main nitrate-reducing sulfide-oxidizing bacteria (NR-SOB) genera involved in the biodesulfurization process.
Collapse
Affiliation(s)
- Javier Brito
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Antonio Valle
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain.
| | - Fernando Almenglo
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Martín Ramírez
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technologies, Faculty of Sciences, University of Cadiz, Institute of Viticulture and Agri-food research (IVAGRO), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
14
|
Aspects Determining the Dominance of Fomitopsis pinicola in the Colonization of Deadwood and the Role of the Pathogenicity Factor Oxalate. FORESTS 2020. [DOI: 10.3390/f11030290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon and mineral cycling in sustainable forest systems depends on a microbiome of basidiomycetes, ascomycetes, litter-degrading saprobes, ectomycorrhizal, and mycoparasitic fungi that constitute a deadwood degrading consortium. The brown rot basidiomycete Fomitopsis pinicola (Swartz: Fr.) P. Karsten (Fp), as an oxalate-producing facultative pathogen, is an early colonizer of wounded trees and fresh deadwood. It replaces basidiomycetous white rot fungi and non-basidiomycetous fungal phyla in the presence of its volatilome, but poorly in its absence. With the goal of determining its dominance over the most competitive basidiomycetes and its role in fungal successions within the forest microbiome in general, Fp was exposed to the white rot fungus Kuehneromyces mutabilis (Schaeff.: Fr.) Singer & Smith (Km) in aseptic dual culture established on fertilized 100 mm-long wood dust columns in glass tubes with the inclusion of their volatilomes. For the mycelia approaching from the opposite ends of the wood dust columns, the energy-generating systems of laccase and manganese peroxidase (MnP), the virulence factor oxalate, and the exhalation of terpenes were determined by spectrophotometry, High Pressure Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS). Km mycelia perceived the approaching Fp over 20 mm of non-colonized wood dust, reduced the laccase activity to 25%, and raised MnP to 275%–500% by gaining energy and presumably by controlling oxalate, H2O2, and the dropping substrate pH caused by Fp. On mycelial contact, Km stopped Fp, secured its substrate sector with 4 mm of an impermeable barrier region during an eruption of antimicrobial bisabolenes, and dropped from the invasion mode of substrate colonization into the steady state mode of low metabolic and defensive activity. The approaching Fp raised the oxalate production throughout to >20 g kg−1 to inactivate laccase and caused, with pH 1.4–1.7, lethal conditions in its substrate sector whose physiological effects on Km could be reproduced with acidity conditions incited by HCl. After a mean lag phase of 11 days, Fp persisting in a state of high metabolic activity overgrew and digested the debilitated Km thallus and terminated the production of oxalate. It is concluded that the factors contributing to the competitive advantage of F. pinicola in the colonization of wounded trees and pre-infected deadwood are the drastic long-term acidification of the timber substrate, its own insensitivity to extremely low pH conditions, its efficient control of the volatile mono- and sesquiterpenes of timber and microbial origin, and the action of a undefined blend of terpenes and allelopathic substances.
Collapse
|
15
|
Mansoori AM, Ando N, Higuchi T. Influence of phosphorus and trace metals in biofilters treating gaseous VOCs using a novel irrigation system. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1348-1360. [PMID: 31437084 DOI: 10.1080/10962247.2019.1658659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Although the appropriate supply of nutrients has been extensively researched, more information is required on the effects of nutrients in treating gaseous volatile organic compounds (VOCs) in biofiltration. In this study, the effects of phosphorous and trace metals on gaseous toluene and methyl ethyl ketone (MEK) removal were investigated. The transfer of nutrients from the irrigation liquid to the packed bed, and the consumption and holding amount of nutrients in the packing material were observed during biofiltration. Under conditions of 20-24 s of empty bed residence time, MEK removal was 95% or more in all conditions of the biofiltration reactors, whereas toluene removal was affected by the operating conditions of the reactors. Consumption ratio of phosphorus to carbon was from 1.7 × 10-4 to 1.1 × 10-3 in the steady state of VOC removal under the conditions of this study. When gaseous VOC treatment was restarted after nine days of shutdown, a significant decline in toluene removal was observed by the reactor in which phosphorus supply was approximately one fifth of the amount in another reactor. Two types of irrigation systems, soaking and spraying, were compared and soaking irrigation achieved a more even distribution of nutrients held inside the packed bed. Soaking irrigation was expected to lead to higher VOC removal capacity by this distribution effect of nutrients, but toluene removal in the reactor with this irrigation was lower than that in the reactor with spraying irrigation. One of the possible reasons for this was the inhibition of nutrients transfer in the bottom part of the reactor. The trend of transfer in all ingredients from the irrigation liquid to the packed bed was synchronized on the whole; however, this transfer relatively tended to be high in nitrate and sodium and low in ammonium and phosphate. Implications: A major concern about using biofiltration systems to treat VOCs is the uncertainty regarding the appropriate nutrient supply to the filter bed to preserve microbial activity. This study showed that all the elements, except nitrogen, were retained sufficiently in the filter bed when a proper composition of nutrient solution was used for irrigation; however, phosphate addition may be needed when restarting a reactor from a prolonged period of shutdown. Distinct differences in the amount of transfer to the filter bed for different ingredients are probable, and may have to be taken into account when operating biofiltration reactors.
Collapse
Affiliation(s)
- Ahmad Masoud Mansoori
- Graduate School of Science and Engineering, Ritsumeikan University , Kusatsu , Japan
| | - Nobuya Ando
- Graduate School of Science and Engineering, Ritsumeikan University , Kusatsu , Japan
| | - Takashi Higuchi
- School of Science and Engineering, Ritsumeikan University , Kusatsu , Japan
| |
Collapse
|
16
|
Liu F, Fiencke C, Guo J, Lyu T, Dong R, Pfeiffer EM. Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15847-15856. [PMID: 30955200 DOI: 10.1007/s11356-019-04924-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The use of bioscrubber is attracting increasing attention for exhaust gas treatment in intensive pig farming. However, the challenge is to improve the methane (CH4) removal efficiency as well as the possibility of pig house wastewater treatment. Three laboratory-scale bioscrubbers, each equipped with different recirculation water types, livestock wastewater (10-times-diluted pig house wastewater supernatant), a methanotroph growth medium (10-times-diluted), and tap water, were established to evaluate the performance of CH4 removal and wastewater treatment. The results showed that enhanced CH4 removal efficiency (25%) can be rapidly achieved with improved methanotrophic activity due to extra nutrient support from the wastewater. The majority of the CH4 was removed in the middle to end part of the bioscrubbers, which indicated that CH4 removal could be potentially optimised by extending the length of the reactor. Moreover, 52-86% of the ammonium (NH4+-N), total organic carbon (TOC), and phosphate (PO43--P) removal were simultaneously achieved with CH4 removal in the present study. Based on these results, this study introduces a low-cost and simple-to-operate method to improve CH4 removal and simultaneously treat pig farm wastewater in bioscrubbers.
Collapse
Affiliation(s)
- Fang Liu
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Qinghua East Road 17, Beijing, 100083, China
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| | - Claudia Fiencke
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| | - Jianbin Guo
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Qinghua East Road 17, Beijing, 100083, China.
| | - Tao Lyu
- School of Animal Rural & Environmental Sciences, Nottingham Trent University, Nottinghamshire, NG25 0QF, UK.
| | - Renjie Dong
- College of Engineering, China Agricultural University (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), Qinghua East Road 17, Beijing, 100083, China
| | - Eva-Maria Pfeiffer
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| |
Collapse
|
17
|
Cheng Z, Feng K, Xu D, Kennes C, Chen J, Chen D, Zhang S, Ye J, Dionysiou DD. An innovative nutritional slow-release packing material with functional microorganisms for biofiltration: Characterization and performance evaluation. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:16-26. [PMID: 30500694 DOI: 10.1016/j.jhazmat.2018.11.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The type of packing material for biofiltration has a great impact on microbial growth and pollutant removal. This study evaluated the feasibility of a nutritional slow-release packing material with functional microorganisms (NSRP-FM) in a biofilter for the removal of gaseous n-butyl acetate. Through the emulsification-cross linked process and microbial immobilization, an innovative packing material was obtained, with a specific surface area of 2.45 m2 g-1 and a bulk density of 40.75 kg m-3. The cumulative release rates of total phosphorus and total nitrogen were 90.6% and 75.6%, respectively, as measured while continuously spraying deionized water. To evaluate the performance of biofiltration, NSRP-FM was compared with the commercial polyurethane foam (PU-foam), in two identical biotrickling filters (BTFs). The BTF packed with the prepared NSRP-FM maintained a consistent removal efficiency (over 95%) without nutrients addition and pH adjustment. The other BTF had poor removal performance, and the removal efficiency declined to 65% when there was no pH adjustment. Energy dispersive X-ray spectroscopy (EDS) analysis of NSRP-FM showed that inorganic elements were released during the operation of BTF. The abundance of functional microorganisms suggested that the prepared NSRP-FM provided a better environment for microbial growth, despite changes in the operating conditions.
Collapse
Affiliation(s)
- Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Danhua Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Science, University of La Coruna, 15001, Spain
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China.
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310009, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|
18
|
Han MF, Wang C, Yang NY, Li YF. Determination of design parameters and cost-effectiveness analysis for a two-liquid phase biofilter treating gaseous dichloromethane. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Yuan J, Du L, Li S, Yang F, Zhang Z, Li G, Wang G. Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3762-3770. [PMID: 30539397 DOI: 10.1007/s11356-018-3795-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A study was conducted to investigate the utilization of mature compost as a biofilter medium for the removal of hydrogen sulfide (H2S) from the exhaust gases of the composting process. Source-selected kitchen waste from municipal solid waste was composted in a reactor, and the exhaust gas was passed through a biofilter packed with a 1:4 (wet weight) mixture of mature compost and sand. Two treatments were applied under sterilized and unsterilized conditions to quantify the contribution of microbial activity. The effect of packing depth on H2S removal efficiency was also studied. A global H2S removal efficiency of 51% was obtained in the biofilter for loading rates in the range of 0-429 mg H2S m-3 h-1. The adsorption capacity was the main factor affecting H2S removal efficiency, contributing 64.2% to the total removal efficiency, with microbial activity contributing 35.8%. The relationship between the cumulative amount of H2S removed and the packing height was well-described by a linear equation. The equation indicated that 99% H2S removal efficiency could be achieved using a packing height of 96 cm for unsterilized packing material or 158 cm for sterilized packing material.
Collapse
Affiliation(s)
- Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Longlong Du
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Shuyan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Fan Yang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Zhiye Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
20
|
Brito J, Valle A, Almenglo F, Ramírez M, Cantero D. Progressive change from nitrate to nitrite as the electron acceptor for the oxidation of H2S under feedback control in an anoxic biotrickling filter. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Liu F, Wienke C, Fiencke C, Guo J, Dong R, Pfeiffer EM. Biofilter with mixture of pine bark and expanded clay as packing material for methane treatment in lab-scale experiment and field-scale implementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31297-31306. [PMID: 30194576 DOI: 10.1007/s11356-018-3102-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Low methane (CH4) emission reduction efficiency (< 25%) has been prevalent due to inefficient biological exhaust gas treatment facilities in mechanic biological waste treatment plants (MBTs) in Germany. This study aimed to quantify the improved capacity of biofilters composed of a mixture of organic (pine bark) and inorganic (expanded clay) packing materials in reducing CH4 emissions in both a lab-scale experiment and field-scale implementation. CH4 removal performance was evaluated using lab-scale biofilter columns under varied inflow CH4 concentrations (70, 130, and 200 g m-3) and corresponding loading rates of 8.2, 4.76, and 3.81 g m-3 h-1, respectively. The laboratory CH4 removal rates (1.2-2.2 g m-3 h-1) showed positive correlation with the inflow CH4 loading rates (4-8.2 g m-3 h-1), indicating high potential for field-scale implementation. Three field-scale biofilter systems with the proposed mixture packing materials were constructed in an MBT in Neumünster, northern Germany. A relatively stable CH4 removal efficiency of 38-50% was observed under varied inflow CH4 concentrations of 28-39 g m-3 (loading rates of 1120-2340 g m-3 h-1) over a 24-h period. The CH4 removal rate was approximately 500-700 g m-3 h-1, which was significantly higher than relevant previously reported field-scale biofilter systems (16-50 g m-3 h-1). The present study provides a promising configuration of biofilter systems composed of a mixture of organic (pine bark) and inorganic (expanded clay) packing materials to achieve high CH4 emission reduction. Graphic abstract ᅟ.
Collapse
Affiliation(s)
- Fang Liu
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Qinghua East Road 17, Beijing, 100083, China
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| | - Cindy Wienke
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| | - Claudia Fiencke
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Qinghua East Road 17, Beijing, 100083, China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Qinghua East Road 17, Beijing, 100083, China
| | - Eva-Maria Pfeiffer
- Center for Earth System Research and Sustainability, Institute of Soil Science, Universität Hamburg, Allende-Platz 2, 20146, Hamburg, Germany
| |
Collapse
|
22
|
Ferrero P, San-Valero P, Gabaldón C, Martínez-Soria V, Penya-Roja JM. Anaerobic degradation of glycol ether-ethanol mixtures using EGSB and hybrid reactors: Performance comparison and ether cleavage pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:159-167. [PMID: 29494932 DOI: 10.1016/j.jenvman.2018.02.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The anaerobic biodegradation of ethanol-glycol ether mixtures as 1-ethoxy-2-propanol (E2P) and 1-methoxy-2-propanol (M2P), widely used in printing facilities, was investigated by means of two laboratory-scale anaerobic bioreactors at 25oC: an expanded granular sludge bed (EGSB) reactor and an anaerobic hybrid reactor (AHR), which incorporated a packed bed to improve biomass retention. Despite AHR showed almost half of solid leakages compared to EGSB, both reactors obtained practically the same performance for the operating conditions studied with global removal efficiencies (REs) higher than 92% for organic loading rates (OLRs) as high as 54 kg of chemical oxygen demand (COD) m-3 d-1 (REs of 70% and 100% for OLRs of 10.6 and 8.3 kg COD m-3 d-1 for E2P and M2P, respectively). Identified byproducts allowed clarifying the anaerobic degradation pathways of these glycol ethers. Thus, this study shows that anaerobic scrubber can be a feasible treatment for printing emissions.
Collapse
Affiliation(s)
- P Ferrero
- Research Group on Environmental Engineering (GI(2)AM), Department of Chemical Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain.
| | - P San-Valero
- Research Group on Environmental Engineering (GI(2)AM), Department of Chemical Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain.
| | - C Gabaldón
- Research Group on Environmental Engineering (GI(2)AM), Department of Chemical Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain.
| | - V Martínez-Soria
- Research Group on Environmental Engineering (GI(2)AM), Department of Chemical Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain.
| | - J M Penya-Roja
- Research Group on Environmental Engineering (GI(2)AM), Department of Chemical Engineering, University of Valencia, Avda. Universitat s/n, 46100 Burjassot, Spain.
| |
Collapse
|
23
|
Rene ER, Sergienko N, Goswami T, López ME, Kumar G, Saratale GD, Venkatachalam P, Pakshirajan K, Swaminathan T. Effects of concentration and gas flow rate on the removal of gas-phase toluene and xylene mixture in a compost biofilter. BIORESOURCE TECHNOLOGY 2018; 248:28-35. [PMID: 28844689 DOI: 10.1016/j.biortech.2017.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the performance of a compost/ceramic bead biofilter (6:4 v/v) for the removal of gas-phase toluene and xylene at different inlet loading rates (ILR). The inlet toluene (or) xylene concentrations were varied from 0.1 to 1.5gm-3, at gas flow rates of 0.024, 0.048 and 0.072m3h-1, respectively, corresponding to total ILR varying between 7 and 213gm-3h-1. Although there was mutual inhibition, xylene removal was severely inhibited by the presence of toluene than toluene removal by the presence of xylene. The biofilter was also exposed to transient variations such as prolonged periods of shutdown (30days) and shock loads to envisage the response and recuperating ability of the biofilter. The maximum elimination capacity (EC) for toluene and xylene were 29.2 and 16.4gm-3h-1, respectively, at inlet loads of 53.8 and 43.7gm-3h-1.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Natalia Sergienko
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Torsha Goswami
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - M Estefanía López
- Department of Chemical Engineering, Faculty of Sciences, Campus da Zapateira, University of La Coruńa, Rua da Fraga, 10, E-15008 La Coruña, Spain
| | - Gopalakrishnan Kumar
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Perumal Venkatachalam
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - K Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - T Swaminathan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
24
|
Srivastva N, Singh A, Bhardwaj Y, Dubey SK. Biotechnological potential for degradation of isoprene: a review. Crit Rev Biotechnol 2017; 38:587-599. [DOI: 10.1080/07388551.2017.1379467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Navnita Srivastva
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yashpal Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Srivastva N, Singh RS, Dubey SK. Efficacy of wood charcoal and its modified form as packing media for biofiltration of isoprene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:252-260. [PMID: 28288359 DOI: 10.1016/j.jenvman.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/08/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
The efficacy of wood charcoal (WC) and nutrient-enriched wood charcoal (NWC) as biofilter packing media were assessed for isoprene biodegradation in a bioreactor comprising bioscrubber and a biofilter connected in series and inoculated with Pseudomonas sp. The bioreactors using WC and NWC exhibited >90% removal efficiency and around 369 g m-3 h-1 elimination capacity at around 404 g m-3 h-1 inlet loading rate. In both the bioreactors, the biofilter component showed better degradation capacity compared to the bioscrubber unit. The kinetic parameters, maximum elimination capacity, ECmax; substrate constant, Ks and ECmax/Ks for Michaelis-Menten model were evaluated. The lower Ks for the WC packed bioreactor indicated that ECmax achieved, was faster compared to others, while higher ECmax and ECmax/Ks for the NWC packed bioreactor suggests its superiority in isoprene abatement in the continuous mode. A comparison of the available published information on biofiltration of isoprene reflected polyurethane foam as the superior packing media.
Collapse
Affiliation(s)
- Navnita Srivastva
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram S Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Suresh K Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv 2016; 34:1091-1102. [DOI: 10.1016/j.biotechadv.2016.06.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022]
|
27
|
Baltrėnas P, Baltrėnaitė E, Kleiza J, Švedienė J. A biochar-based medium in the biofiltration system: Removal efficiency, microorganism propagation, and the medium penetration modeling. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:673-686. [PMID: 26980677 DOI: 10.1080/10962247.2016.1162227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Biofiltration is a method of biological treatment belonging to cleaner technologies because it does not produce secondary air pollutants, but helps to integrate natural processes in microorganisms for decomposing volatile air pollutants and solving odor problems. The birch wood biochar has been chosen as a principal material for biofilter bed medium. The experiments were conducted at the temperatures of 24, 28, and 32 °C, while the concentration of acetone, xylene, and ammonium reached 300 mg/m(3) and the flow rate was 100 m(3)/hr. Before passing through the stage of the experimental research into the packing material inside biofilters, microorganisms were introduced. Four strains of microorganisms (including micromycetes Aspergillus versicolor BF-4 and Cladosporium herbarum 7KA, as well as yeast Exophiala sp. BF1 and bacterium Bacillus subtilis B20) were selected. At the inlet loading rate of 120 g/m(3)/hr, the highest elimination capacity of xylene in the biochar-based biofilter with the inoculated medium was 103 g/m(3)/hr, whereas that of ammonia was 102 g/m(3)/hr and that of acetone was 97 g/m(3)/hr, respectively. The maximum removal efficiency reached 86%, 85%, and 81%, respectively. The temperature condition (though characterized by some rapid changes) can hardly have a considerable influence on the biological effect (i.e., microbiological activity) of biofiltration; however, it can cause the changes in physical properties (e.g., solubility) of the investigated compounds. IMPLICATIONS The birch biochar can be successfully used in the biofiltration system for propagation of inoculated microorganisms, biodegrading acetone, xylene, and ammonia. At the inlet loading rate of 120 g/m(3)/hr, the highest elimination capacity of xylene was 103 g/m(3)/hr, that of ammonia was 102 g/m(3)/hr, and that of acetone was 97 g/m(3)/hr, respectively. The morphological structure of biochar can be affected by the aggressive air contaminants, causing the change in the medium specific surface area, which is one of the factors controlling the biofilter performance. Although biological effects in biofiltration are typically considered to be more important than physical effects, the former may be more important for compounds with high Henry's Law coefficient values, and the biofilter design should thus provide conditions for better compound absorption.
Collapse
Affiliation(s)
- Pranas Baltrėnas
- a Institute of Environmental Protection , Vilnius Gediminas Technical University , Vilnius , Lithuania
| | - Edita Baltrėnaitė
- a Institute of Environmental Protection , Vilnius Gediminas Technical University , Vilnius , Lithuania
| | - Jonas Kleiza
- b Department of Mathematical Modelling , Vilnius Gediminas Technical University , Vilnius , Lithuania
| | - Jurgita Švedienė
- c Laboratory of Biodeterioration Research , Nature Research Centre , Vilnius , Lithuania
| |
Collapse
|
28
|
Baltrėnas P, Zagorskis A, Misevičius A. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates. BIOTECHNOL BIOTEC EQ 2015; 29:404-413. [PMID: 26019659 PMCID: PMC4434071 DOI: 10.1080/13102818.2015.1006413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/03/2014] [Indexed: 11/15/2022] Open
Abstract
The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s-1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g-1.
Collapse
Affiliation(s)
- Pranas Baltrėnas
- Faculty of Environmental Engineering, Research Institute of Environment Protection, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Alvydas Zagorskis
- Faculty of Environmental Engineering, Research Institute of Environment Protection, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Antonas Misevičius
- Faculty of Environmental Engineering, Research Institute of Environment Protection, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
29
|
Portune KJ, Pérez MC, Álvarez-Hornos FJ, Gabaldón C. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing. Appl Microbiol Biotechnol 2015; 99:3-18. [PMID: 24950754 PMCID: PMC4286631 DOI: 10.1007/s00253-014-5868-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 11/29/2022]
Abstract
Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.
Collapse
Affiliation(s)
- Kevin J Portune
- Research Group GI2AM, Department of Chemical Engineering, Universitat de València, Av. de la Universidad s/n, 46100, Burjassot, Spain,
| | | | | | | |
Collapse
|
30
|
Malhautier L, Soupramanien A, Bayle S, Rocher J, Fanlo JL. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds. Appl Microbiol Biotechnol 2014; 99:89-96. [PMID: 24898634 DOI: 10.1007/s00253-014-5842-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15-20% more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 10(10) 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07%, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system.
Collapse
Affiliation(s)
- Luc Malhautier
- Ecole des mines d'Alès, 6 Avenue de Clavières, 30319, Alès Cedex, France,
| | | | | | | | | |
Collapse
|
31
|
Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities. Appl Environ Microbiol 2014; 80:4805-13. [PMID: 24878602 DOI: 10.1128/aem.00595-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters.
Collapse
|
32
|
Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures. Appl Microbiol Biotechnol 2014; 99:19-32. [DOI: 10.1007/s00253-014-5773-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
33
|
Tischler D, Kaschabek SR. Microbial Styrene Degradation: From Basics to Biotechnology. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Li J, Ye G, Sun D, An T, Sun G, Liang S. Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant. Biodegradation 2011; 23:177-87. [DOI: 10.1007/s10532-011-9497-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/29/2011] [Indexed: 11/28/2022]
|
35
|
Rene ER, Estefanía López M, Veiga MC, Kennes C. Neural network models for biological waste-gas treatment systems. N Biotechnol 2011; 29:56-73. [PMID: 21784184 DOI: 10.1016/j.nbt.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes.
Collapse
Affiliation(s)
- Eldon R Rene
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, E-15008 La Coruña, Spain
| | | | | | | |
Collapse
|
36
|
Greń I, Gąszczak A, Guzik U, Bartelmus G, Łabużek S. A comparative study of biodegradation of vinyl acetate by environmental strains. ANN MICROBIOL 2011; 61:257-265. [PMID: 21654921 PMCID: PMC3088821 DOI: 10.1007/s13213-010-0130-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 08/25/2010] [Indexed: 11/28/2022] Open
Abstract
Four Gram-negative strains, E3_2001, EC1_2004, EC3_3502 and EC2_3502, previously isolated from soil samples, were subjected to comparative studies in order to select the best vinyl acetate degrader for waste gas treatment. Comparison of biochemical and physiological tests as well as the results of fatty acids analyses were comparable with the results of 16S rRNA gene sequence analyses. The isolated strains were identified as Pseudomonas putida EC3_2001, Pseudomonas putida EC1_2004, Achromobacter xylosoxidans EC3_3502 and Agrobacterium sp. EC2_3502 strains. Two additional strains, Pseudomonas fluorescens PCM 2123 and Stenotrophomonas malthophilia KB2, were used as controls. All described strains were able to use vinyl acetate as the only source of carbon and energy under aerobic as well as oxygen deficiency conditions. Esterase, alcohol dehydrogenase and aldehyde dehydrogenase were involved in vinyl acetate decomposition under aerobic conditions. Shorter degradation times of vinyl acetate were associated with accumulation of acetic acid, acetaldehyde and ethanol as intermediates in the culture fluids of EC3_2001 and KB2 strains. Complete aerobic degradation of vinyl acetate combined with a low increase in biomass was observed for EC3_2001 and EC1_2004 strains. In conclusion, P. putida EC1_2004 is proposed as the best vinyl acetate degrader for future waste gas treatment in trickle-bed bioreactors.
Collapse
Affiliation(s)
- Izabela Greń
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Agnieszka Gąszczak
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Grażyna Bartelmus
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Sylwia Łabużek
- Department of Biochemistry, Faculty of Biology and Environment Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
37
|
Moon C, Lee EY, Park S. Biodegradation of gas-phase styrene in a high-performance biotrickling filter using porous polyurethane foam as a packing medium. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3014-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Yang C, Chen H, Zeng G, Yu G, Luo S. Biomass accumulation and control strategies in gas biofiltration. Biotechnol Adv 2010; 28:531-40. [DOI: 10.1016/j.biotechadv.2010.04.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 03/30/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
|
39
|
Moreno-Terrazas R, Flores-Tena FJ, Barba-Avila MD, Guerrero-Barrera AL, Avelar-Gonzalez FJ, Ramirez-Lopez EM. A comparative analysis of microflora during biofilm development on grape seeds exposed to methanol in a biofilter. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Jeong GT, Lee GY, Cha JM, Park DH. Comparison of packing materials in biofilter system for the biological removal of hydrogen sulfide: Polypropylene fibrils and volcanic stone. KOREAN J CHEM ENG 2008. [DOI: 10.1007/s11814-008-0021-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Alvarez-Hornos FJ, Gabaldón C, Martínez-Soria V, Martín M, Marzal P, Penya-Roja JM. Biofiltration of ethylbenzene vapours: influence of the packing material. BIORESOURCE TECHNOLOGY 2008; 99:269-76. [PMID: 17317157 DOI: 10.1016/j.biortech.2006.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 05/14/2023]
Abstract
In order to investigate suitable packing materials, a soil amendment composed of granular high mineralized peat (35% organic content) locally available has been evaluated as carrier material for biofiltration of volatile organic compounds in air by comparison with a fibrous peat (95% organic content). Both supports were tested to eliminate ethylbenzene from air streams in laboratory-scale reactors inoculated with a two-month conditioned culture. In pseudo-steady state operation, experiments at various ethylbenzene inlet loads (ILs) were carried out. Maximum elimination capacity of about 120 g m(-3) h(-1) for an IL of 135 g m(-3) h(-1) was obtained for the fibrous peat. The soil amendment reactor achieved a maximum elimination capacity of about 45 g m(-3) h(-1) for an inlet load of 55 g m(-3) h(-1). Ottengraf-van den Oever model was applied to the prediction of the performance of both biofilters. The influence of gas flow rate was also studied: the fibrous peat reactor kept near complete removal efficiency for empty bed residence times greater than 1 min. For the soil amendment reactor, an empty bed residence time greater than 2 min was needed to achieve adequate removal efficiency. Concentration profiles along the biofilter were also compared: elimination occurred in the whole fibrous peat biofilter, while in the soil amendment reactor the biodegradation only occurred in the first 65% part of the biofilter. Results indicated that soil amendment material, previously selected to increase the organic content, would have potential application as biofilter carrier to treat moderate VOC inlet loads.
Collapse
Affiliation(s)
- F J Alvarez-Hornos
- Department of Chemical Engineering, University of Valencia, Dr Moliner, 50, 46100, Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Santos S, Jones K, Abdul R, Boswell J, Paca J. Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Nikiema J, Dastous PA, Heitz M. Elimination of volatile organic compounds by biofiltration: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2007; 22:273-294. [PMID: 18351227 DOI: 10.1515/reveh.2007.22.4.273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Volatile organic compounds (VOCs) are pollutants that are responsible for the formation of the tropospheric ozone, one of the precursors of smog. VOCs are emitted by various industries including chemical plants, pulp and paper mills, pharmaceuticals, cosmetics, electronics and agri-food industries. Some VOCs cause odor pollution while many of them are harmful to environment and human or animal health. For the removal of VOCs, biofiltration, a biological process, has proved to be reliable when properly operated. This process has therefore been widely applied in Europe and North America. The main advantages associated with the use of biofiltration are related to its set-up, maintenance, and operating costs which are usually lower than those related to other VOCs control technologies and because it is less harmful for the environment than conventional processes like incineration. In the present paper, the main parameters (type, moisture, pH, and temperature of filter bed, microbial population, nutrients concentrations, and VOCs' inlet load) to be controlled during the biofiltration are identified and described in detail. The main phenomena involved in biofiltration are also discussed. For improving the efficiency of VOC control biotechnology, new techniques are now proposed that include the use of membranes, biphasic reactors, UV photolysis, and many others.
Collapse
Affiliation(s)
- Josiane Nikiema
- Chemical Engineering Department, Faculty of Engineering, Université de Sherbrooke, 2500, Boulevard Université, Sherbrooke, J1K 2R1, Québec, Canada
| | | | | |
Collapse
|
44
|
Mooney A, Ward PG, O'Connor KE. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 2006; 72:1. [PMID: 16823552 DOI: 10.1007/s00253-006-0443-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Large quantities of the potentially toxic compound styrene are produced and used annually by the petrochemical and polymer-processing industries. It is as a direct consequence of this that significant volumes of styrene are released into the environment in both the liquid and the gaseous forms. Styrene and its metabolites are known to have serious negative effects on human health and therefore, strategies to prevent its release, remove it from the environment, and understand its route of degradation were the subject of much research. There are a large number of microbial genera capable of metabolizing styrene as a sole source of carbon and energy and therefore, the possibility of applying these organisms to bioremediation strategies was extensively investigated. From the multitude of biodegradation studies, the application of styrene-degrading organisms or single enzymes for the synthesis of value-added products such as epoxides has emerged.
Collapse
Affiliation(s)
- Aisling Mooney
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick G Ward
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|