1
|
Zhang J, Fan S, Qin J, Dai J, Zhao F, Gao L, Lian X, Shang W, Xu X, Hu X. Changes in the Microbiome in the Soil of an American Ginseng Continuous Plantation. FRONTIERS IN PLANT SCIENCE 2020; 11:572199. [PMID: 33365038 PMCID: PMC7750500 DOI: 10.3389/fpls.2020.572199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/30/2020] [Indexed: 05/22/2023]
Abstract
American ginseng is an important herbal medicinal crop in China. In recent years, there has been an increasing market demand for ginseng, but the production area has been shrinking due to problems associated with continuous monocropping. We analyzed the microbiome in bulk soils to assess whether and, if so, what changes in the bulk soil microbiome are associated with continuous American ginseng cropping. The alpha diversity of fungi and bacteria was significantly lower in the soils planted with American ginseng than the virgin (non-planted) land. The relative abundance of Fusarium spp. and Ilyonectria spp., known plant root pathogens, was much higher in the soils cropped with American ginseng than the non-planted. On the other hand, a number of bacteria with biodegradation function, such as Methylibium spp., Sphingomonas spp., Variovorax spp., and Rubrivivax spp., had lower abundance in the soils cropped with American ginseng than the non-cropped. In addition, soil pH was lower in the field planted with American ginseng than the non-planted. Accumulation of fungal root pathogens and reduction of soil pH may, therefore, have contributed to the problems associated with continuous monocropping of American ginseng.
Collapse
Affiliation(s)
- Jiguang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Sanhong Fan
- College of Life Science, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jichen Dai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fangjie Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liqiang Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xihong Lian
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiangming Xu
- NIAB East Malling Research (EMR), Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Xiaoping Hu
| |
Collapse
|
2
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Enrichment and Analysis of Stable 1,4-dioxane-Degrading Microbial Consortia Consisting of Novel Dioxane-Degraders. Microorganisms 2019; 8:microorganisms8010050. [PMID: 31881778 PMCID: PMC7022751 DOI: 10.3390/microorganisms8010050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Biodegradation of 1,4-dioxane, a water contaminant of emerging concern, has drawn substantial attention over the last two decades. A number of dioxane-degraders have been identified, though many of them are unable to metabolically utilize 1,4-dioxane. Moreover, it is considered more preferable to use microbial consortia rather than the pure strains, especially in conventional bioreactors for industrial wastewater treatment. In the present study, a stable 1,4-dioxane-degrading microbial consortium was enriched, namely 112, from industrial wastewater by nitrate mineral salt medium (NMSM). The consortium 112 is capable of utilizing 1,4-dioxane as a sole carbon and energy source, and can completely degrade 1,4-dioxane up to 100 mg/L. From the consortium 112, two 1,4-dioxane-degrading bacterial strains were isolated and identified, in which the Variovorax sp. TS13 was found to be a novel 1,4-dioxane-degrader that can utilize 100 mg/L of 1,4-dioxane. The efficacy of the consortium 112 was increased significantly when we cultured the consortium with mineral salt medium (MSM). The new consortium, N112, could utilize 1,4-dioxane at a rate of 1.67 mg/L·h. The results of the ribosomal RNA intergenic spacer analysis (RISA) depicted that changes in the microbial community structure of consortium 112 was the reason behind the improved degradation efficiency of consortium N112, which was exhibited as a stable and effective microbial consortium with a high potential for bioremediation of the dioxane-impacted sites and contaminated industrial wastewater.
Collapse
|
3
|
Sathyamoorthy S, Hoar C, Chandran K. Identification of Bisphenol A-Assimilating Microorganisms in Mixed Microbial Communities Using 13C-DNA Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9128-9135. [PMID: 30040394 DOI: 10.1021/acs.est.8b01976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A wide range of trace organic contaminants (TOrCs), including the endocrine-disrupting compound bisphenol A (BPA), are subject to microbial transformations during biological wastewater treatment. However, relatively little is known about the identity of organisms capable of assimilating emerging contaminants. Here, 13C-DNA stable isotope probing (DNA-SIP) was used to investigate biodegradation and assimilation of BPA by mixed microbial communities collected from two full-scale wastewater treatment plant bioreactors in New York City and subsequently enriched under two BPA exposure conditions. The four enrichment modes (two reactors with two initial BPA concentrations) resulted in four distinct communities with different BPA degradation rates. On the basis of DNA-SIP, bacteria related to Sphingobium spp. were dominant in the assimilation of BPA or its metabolites. Variovorax spp. and Pusillimonas spp. also assimilated BPA or its metabolites. Our results highlight that microbial communities originating from wastewater treatment facilities harbor the potential for addressing not only human-derived carbon but also BPA, a complex anthropogenic TOrC. While previous studies focus on microbial biodegradation of BPA, this study uniquely determines the "active" fraction of microorganisms engaged in assimilation of BPA-derived carbon. Ultimately, information on both biodegradation and assimilation can facilitate better design and operation of engineered treatment processes to achieve BPA removal.
Collapse
Affiliation(s)
- Sandeep Sathyamoorthy
- Department of Earth and Environmental Engineering , Columbia University , Room 1045, Mudd Hall, 500 West 120th Street , New York , New York 10027 , United States
| | - Catherine Hoar
- Department of Earth and Environmental Engineering , Columbia University , Room 1045, Mudd Hall, 500 West 120th Street , New York , New York 10027 , United States
| | - Kartik Chandran
- Department of Earth and Environmental Engineering , Columbia University , Room 1045, Mudd Hall, 500 West 120th Street , New York , New York 10027 , United States
| |
Collapse
|
4
|
Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 2018; 34:34. [DOI: 10.1007/s11274-018-2417-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
5
|
Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol 2017; 200:255-265. [DOI: 10.1007/s00203-017-1439-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/24/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
|
6
|
Joshi G, Schmidt R, Scow KM, Denison MS, Hristova KR. Gene mdpC plays a regulatory role in the methyl-tert-butyl ether degradation pathway of Methylibium petroleiphilum strain PM1. FEMS Microbiol Lett 2015; 362:fnv029. [PMID: 25724531 DOI: 10.1093/femsle/fnv029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the few bacteria known to utilize methyl tert-butyl ether (MTBE) as a sole carbon source, Methylibium petroleiphilum PM1 is a well-characterized organism with a sequenced genome; however, knowledge of the genetic regulation of its MTBE degradation pathway is limited. We investigated the role of a putative transcriptional activator gene, mdpC, in the induction of MTBE-degradation genes mdpA (encoding MTBE monooxygenase) and mdpJ (encoding tert-butyl alcohol hydroxylase) of strain PM1 in a gene-knockout mutant mdpC(-). We also utilized quantitative reverse transcriptase PCR assays targeting genes mdpA, mdpJ and mdpC to determine the effects of the mutation on transcription of these genes. Our results indicate that gene mdpC is involved in the induction of both mdpA and mdpJ in response to MTBE and tert-butyl alcohol (TBA) exposure in PM1. An additional independent mechanism may be involved in the induction of mdpJ in the presence of TBA.
Collapse
Affiliation(s)
- Geetika Joshi
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Kate M Scow
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Krassimira R Hristova
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA Biological Sciences Department, Marquette University, Milwaukee, WI 53201, USA
| |
Collapse
|
7
|
Le Digabel Y, Demanèche S, Benoit Y, Fayolle-Guichard F, Vogel TM. Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:502-510. [PMID: 25108826 DOI: 10.1016/j.jhazmat.2014.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.
Collapse
Affiliation(s)
- Yoann Le Digabel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France; Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sandrine Demanèche
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Yves Benoit
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Françoise Fayolle-Guichard
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| |
Collapse
|
8
|
Levchuk I, Bhatnagar A, Sillanpää M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:415-433. [PMID: 24486497 DOI: 10.1016/j.scitotenv.2014.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water.
Collapse
Affiliation(s)
- Irina Levchuk
- Laboratory of Green Chemistry, Department of Energy and Environmental Technology, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Amit Bhatnagar
- Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Department of Energy and Environmental Technology, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
9
|
Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 2013; 97:10531-9. [DOI: 10.1007/s00253-013-4803-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
|
10
|
Abstract
This review outlines information about the Gram-negative, aerobic bacterium Variovorax paradoxus. The genomes of these species have G+C contents of 66.5-69.4 mol%, and the cells form yellow colonies. Some strains of V. paradoxus are facultative lithoautotrophic, others are chemoorganotrophic. Many of them are associated with important catabolic processes including the degradation of toxic and/or complex chemical compounds. The degradation pathways or other skills related to the following compounds, respectively, are described in this review: sulfolane, 3-sulfolene, 2-mercaptosuccinic acid, 3,3'-thiodipropionic acid, aromatic sulfonates, alkanesulfonates, amino acids and other sulfur sources, polychlorinated biphenyls, dimethyl terephthalate, linuron, 2,4-dinitrotoluene, homovanillate, veratraldehyde, 2,4-dichlorophenoxyacetic acid, anthracene, poly(3-hydroxybutyrate), chitin, cellulose, humic acids, metal-EDTA complexes, yttrium, rare earth elements, As(III), trichloroethylene, capsaicin, 3-nitrotyrosine, acyl-homoserine lactones, 1-aminocyclopropane-1-carboxylate, methyl tert-butyl ether, geosmin, and 2-methylisoborneol. Strains of V. paradoxus are also engaged in mutually beneficial interactions with other plant and bacterial species in various ecosystems. This species comprises probably promising strains for bioremediation and other biotechnical applications. Lately, the complete genomes of strains S110 and EPS have been sequenced for further investigations.
Collapse
|
11
|
Hyman M. Biodegradation of gasoline ether oxygenates. Curr Opin Biotechnol 2012; 24:443-50. [PMID: 23116604 DOI: 10.1016/j.copbio.2012.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments.
Collapse
Affiliation(s)
- Michael Hyman
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
12
|
The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:759865. [PMID: 22482056 PMCID: PMC3310211 DOI: 10.1155/2012/759865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil.
Collapse
|
13
|
Bers K, Sniegowski K, Albers P, Breugelmans P, Hendrickx L, De Mot R, Springael D. A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol Ecol 2011; 76:14-25. [PMID: 21204875 DOI: 10.1111/j.1574-6941.2010.01028.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE) approaches that specifically target the Variovorax 16S rRNA gene were developed to estimate the number and diversity of Variovorax in environmental ecosystems. PCR primers suitable for both methods were selected as such that the enclosed sequence showed maximum polymorphism. PCR specificity was maximized by combining PCR with a targeted endonuclease treatment of template DNA to eliminate 16S rRNA genes of the closely related Acidovorax. DGGE allowed the grouping of PCR amplicons according to the phylogenetic grouping within the genus Variovorax. The toolbox was used to assess the Variovorax community dynamics in agricultural soil microcosms (SMs) exposed to the phenylurea herbicide linuron. Exposure to linuron resulted in an increased abundance within the Variovorax community of a subgroup previously linked to linuron degradation through cultivation-dependent isolation. SMs that were treated only once with linuron reverted to the initial community composition 70 days after linuron exposure. In contrast, SMs irrigated with linuron on a long-term base showed a significant increase in Variovorax number after 70 days. Our data support the hypothesis that the genus Variovorax is involved in linuron degradation in linuron-treated agricultural soils.
Collapse
Affiliation(s)
- Karolien Bers
- Division of Soil and Water Management, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 2010; 77:1086-96. [PMID: 21148686 DOI: 10.1128/aem.01698-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.
Collapse
|
15
|
Biodegradation of methyl tert-butyl ether by newly identified soil microorganisms in a simple mineral solution. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0522-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Abstract
Low temperature environments are numerous on Earth and have been successfully colonized by cold-loving organisms termed psychrophiles. Cold-adapted microorganisms can be used as cell factories for the production of unstable compounds as well as for bioremediation of polluted cold soils and wastewaters. Furthermore, their biomolecules, mainly proteins and enzymes characterized by a high catalytic activity and pronounced heat-lability, have already found useful applications in various domains such as molecular biology, medical research, industrial food or feed technologies, detergents or cosmetics.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
17
|
Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 2010; 88:309-17. [DOI: 10.1007/s00253-010-2730-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/02/2010] [Accepted: 06/12/2010] [Indexed: 11/27/2022]
|
18
|
|
19
|
House AJ, Hyman MR. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 2009; 21:525-41. [DOI: 10.1007/s10532-009-9321-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/26/2009] [Indexed: 11/28/2022]
|
20
|
Trifonova R, Postma J, Schilder MT, van Elsas JD. Microbial enrichment of a novel growing substrate and its effect on plant growth. MICROBIAL ECOLOGY 2009; 58:632-641. [PMID: 19387721 PMCID: PMC2745527 DOI: 10.1007/s00248-009-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 10(8) and 10(9) CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90-100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared to the control treatment without microbial inoculants. Colonization with C. ligniaria also protected the substrate from uncontrolled colonization by other fungi. The excellent colonization of TGF by the selected plant-health promoting bacteria in combination with the fungus C. ligniaria offers the possibility to create disease suppressive substrate, meanwhile replacing 20% to 50% of peat in potting soil by TGF.
Collapse
Affiliation(s)
- R. Trifonova
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Microbial Ecology Department, Center for Evolutionary and Ecological Studies, Rijksuniversiteit Groningen, Haren, The Netherlands
| | - J. Postma
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M. T. Schilder
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - J. D. van Elsas
- Microbial Ecology Department, Center for Evolutionary and Ecological Studies, Rijksuniversiteit Groningen, Haren, The Netherlands
| |
Collapse
|
21
|
Müller RH, Rohwerder T, Harms H. Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. MICROBIOLOGY-SGM 2008; 154:1414-1421. [PMID: 18451050 DOI: 10.1099/mic.0.2007/014159-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Aquincola tertiaricarbonis L108 on the fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), as well as on their main metabolites tert-butyl alcohol (TBA), tert-amyl alcohol (TAA) and 2-hydroxyisobutyrate (2-HIBA) was systematically investigated to characterize the range and rates of oxygenate degradation by this strain. The effective maximum growth rates for MTBE, ETBE and TAME at pH 7 and 30 degrees C were 0.045 h(-1), 0.06 h(-1) and 0.055 h(-1), respectively, whereas TAA, TBA and 2-HIBA permitted growth at rates up to 0.08 h(-1), 0.1 h(-1) and 0.17 h(-1), respectively. The experimental growth yields with all these substrates were high. Yields of 0.55 g dry mass (dm) (g MTBE)(-1), 0.53 g dm (g ETBE)(-1), 0.81 g dm (g TAME)(-1), 0.48 g dm (g TBA)(-1), 0.76 g dm (g TAA)(-1) and 0.54 g dm (g 2-HIBA)(-1) were obtained. Maximum specific degradation rates were 0.92 mmol MTBE h(-1) (g dm)(-1), 1.11 mmol ETBE h(-1) g(-1), 0.66 mmol TAME h(-1) g(-1), 1.19 mmol TAA h(-1) g(-1), 2.82 mmol TBA h(-1) g(-1), and 3.27 mmol 2-HIBA h(-1) g(-1). The relatively high rates with TBA, TAA and 2-HIBA indicate that the transformations of these metabolites did not limit the metabolism of MTBE and the related ether compounds. Despite the fact that these metabolites still carry a tertiary carbon atom that is commonly suspected to confer recalcitrance to the ether oxygenates, the transformation rates were in the same range as those with succinate and fructose. With MTBE, strain L108 grew at pHs between 5.5 and 8.0 at near-maximal rate, whereas no growth was found below pH 5.0 and above pH 9.0. The optimum growth temperature was 30 degrees C, but at 5 degrees C still about 15 % of the maximum rate remained, whereas no growth occurred at 42 degrees C. This indicates that MTBE metabolites are valuable substrates and that A. tertiaricarbonis L108 is a good candidate for bioremediation purposes. The possible origin of its exceptional metabolic capability is discussed in terms of the evolution of enzymic activities involved in the conversion of compounds carrying tertiary butyl groups.
Collapse
Affiliation(s)
- Roland H Müller
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Thore Rohwerder
- Aquatic Biotechnology, Biofilm Centre, University Duisburg-Essen, Geibelstr. 41, D-47057 Duisburg, Germany
| | - Hauke Harms
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
22
|
Häggblom MM, Youngster LKG, Somsamak P, Richnow HH. Anaerobic biodegradation of methyl tert-butyl ether (MTBE) and related fuel oxygenates. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:1-20. [PMID: 17869600 DOI: 10.1016/s0065-2164(07)62001-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Max M Häggblom
- Department of Biochemistry and Microbiology & Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
23
|
Compound-Specific Isotope Analysis (CSIA) to Characterise Degradation Pathways and to Quantify In-Situ Degradation of Fuel Oxygenates and Other Fuel-Derived Contaminants. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-72641-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|