1
|
Mathimaran A, Kumar A. Changes in morphogenesis and carotenogenesis to influence polygalacturonase secretion in Aspergillus carbonarius mutant. Arch Microbiol 2020; 202:1285-1293. [PMID: 32128608 DOI: 10.1007/s00203-020-01838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Mycelial morphogenesis and the production of fungal secretory proteins are still largely unknown. A mutant strain of Aspergillus carbonarius UV-10046 produced abundant polygalacturonase (PG) along with partially saturated canthaxanthin (PSC) at low pH conditions. In the present study, the relationship between PG secretion and PSC biosynthesis was studied using carotenogenic inhibitors and SDS-PAGE electrophoresis. Also the correlation between morphogenesis and PG secretion was investigated by analysing through microscopic studies. From the results, it was observed that secretion of PG was positively influenced by the PSC biosynthesis. The results also showed that the mutant with hairy mycelial structure resulted in higher PG activity when compared to the wild type that lacks hyper branching. From the results, it was confirmed that a mutation might have occurred in the isoprenoid pathway that has helped mutant for survival at acidic conditions. Further, an alteration in the morphogenesis and hyper branching development caused over secretion of PG enzyme in the mutant.
Collapse
Affiliation(s)
- Ahila Mathimaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu, 613403, India
| | - Anbarasu Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu, 613403, India.
| |
Collapse
|
2
|
Sahnoun M, Jemli S, Trabelsi S, Ayadi L, Bejar S. Aspergillus Oryzae S2 α-Amylase Domain C Involvement in Activity and Specificity: In Vivo Proteolysis, Molecular and Docking Studies. PLoS One 2016; 11:e0153868. [PMID: 27101008 PMCID: PMC4839703 DOI: 10.1371/journal.pone.0153868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
We previously reported that Aspergillus oryzae strain S2 had produced two α-amylase isoforms named AmyA and AmyB. The apparent molecular masses revealed by SDS-PAGE were 50 and 42 kDa, respectively. Yet AmyB has a higher catalytic efficiency. Based on a monitoring study of the α-amylase production in both the presence and absence of different protease inhibitors, a chymotrypsin proteolysis process was detected in vivo generating AmyB. A. oryzae S2 α-amylase gene was amplified, cloned and sequenced. The sequence analysis revealed nine exons, eight introns and an encoding open reading frame of 1500 bp corresponding to AmyA isoform. The amino-acid sequence analysis revealed aY371 potential chymotrypsin cleaving site, likely to be the AmyB C-Terminal end and two other potential sites at Y359, and F379. A zymogram with a high acrylamide concentration was used. It highlighted two other closed apparent molecular mass α-amylases termed AmyB1 and AmyB2 reaching40 kDa and 43 kDa. These isoforms could be possibly generated fromY359, and F379secondary cut, respectively. The molecular modeling study showed that AmyB preserved the (β/α)8 barrel domain and the domain B but lacked the C-terminal domain C. The contact map analysis and the docking studies strongly suggested a higher activity and substrate binding affinity for AmyB than AmyA which was previously experimentally exhibited. This could be explained by the easy catalytic cleft accessibility.
Collapse
Affiliation(s)
- Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Sahar Trabelsi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Leila Ayadi
- Preparatory Institute for Engineering Studies, Sfax (IPEIS), University of Sfax, MenzelChaker Road Km 0.5, P.O. Box 3018, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| |
Collapse
|
3
|
Sahnoun M, Kriaa M, Elgharbi F, Ayadi DZ, Bejar S, Kammoun R. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions. Int J Biol Macromol 2015; 75:73-80. [PMID: 25617840 DOI: 10.1016/j.ijbiomac.2015.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Aspergillus oryzae S2 was assayed for alpha-amylase production under solid state fermentation (SSF). In addition to AmyA and AmyB already produced in monitored submerged culture, the strain was noted to produce new AmyB oligomeric forms, in particular a dominant tetrameric form named AmyC. The latter was purified to homogeneity through fractional acetone precipitation and size exclusion chromatography. SDS-PAGE and native PAGE analyses revealed that, purified AmyC was an approximately 172 kDa tetramer of four 42 kDa subunits. AmyC was also noted to display the same NH2-terminal amino acid sequence residues and approximately the same physico-chemical properties of AmyA and AmyB, to exhibit maximum activity at pH 5.6 and 60 °C, and to produce maltose and maltotriose as major starch hydrolysis end-products. Soyabean meal was the best substitute to yeast extract compared to fish powder waste and wheat gluten waste. AmyC production was optimized under SSF using statistical design methodology. Moisture content of 76.25%, C/N substrate ratio of 0.62, and inoculum size of 10(6.87) spores allowed maximum activity of 22118.34 U/g of dried substrate, which was 33 times higher than the one obtained before the application of the central composite design (CCD).
Collapse
Affiliation(s)
- Mouna Sahnoun
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Mouna Kriaa
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Fatma Elgharbi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Dorra-Zouari Ayadi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Samir Bejar
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia.
| | - Radhouane Kammoun
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
4
|
Puttananjaiah MKH, Dhale MA. Glucose released by hydrolytic activity of amylase influences the pigment synthesis in Penicillium
sp NIOM-02. J Basic Microbiol 2012; 53:93-7. [DOI: 10.1002/jobm.201100461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/30/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Mohan-Kumari H. Puttananjaiah
- Department of Food Microbiology; Central Food Technological Research Institute, Council of Scientific and Industrial Research; Mysore India
| | - Mohan A. Dhale
- Biological Oceanography Division; National Institute of Oceanography, Council of Scientific and Industrial Research; Panaji India
| |
Collapse
|
5
|
Herale R, Sukumaran UK, Kadeppagari RK. Evidence for the improvement of thermostability of the maltogenic α-amylase ofAspergillus nigerby negative pressure. STARCH-STARKE 2012. [DOI: 10.1002/star.201100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Characterization of a 52 kDa Exoantigen of Penicillium chrysogenum and Monoclonal Antibodies Suitable for its Detection. Mycopathologia 2009; 169:15-26. [DOI: 10.1007/s11046-009-9226-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|