1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
Essert A, Castiglione K. Dimer Stabilization by SpyTag/SpyCatcher Coupling of the Reductase Domains of a Chimeric P450 BM3 Monooxygenase from Bacillus spp. Improves its Stability, Activity, and Purification. Chembiochem 2024; 25:e202300650. [PMID: 37994193 DOI: 10.1002/cbic.202300650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.
Collapse
Affiliation(s)
- Arabella Essert
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| |
Collapse
|
3
|
Zong L, Zhang Y, Shao Z, Ljubic A, Jacobsen C, Gao R, Eser BE, Wang Y, Guo Z. Selective and Sustainable Production of Sub-terminal Hydroxy Fatty Acids by a Self-Sufficient CYP102 Enzyme from Bacillus Amyloliquefaciens. Chembiochem 2023; 24:e202300368. [PMID: 37406107 DOI: 10.1002/cbic.202300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Enzymatic hydroxylation of fatty acids by Cytochrome P450s (CYPs) offers an eco-friendly route to hydroxy fatty acids (HFAs), high-value oleochemicals with various applications in materials industry and with potential as bioactive compounds. However, instability and poor regioselectivity of CYPs are their main drawbacks. A newly discovered self-sufficient CYP102 enzyme, BAMF0695 from Bacillus amyloliquefaciens DSM 7, exhibits preference for hydroxylation of sub-terminal positions (ω-1, ω-2, and ω-3) of fatty acids. Our studies show that BAMF0695 has a broad temperature optimum (over 70 % of maximal enzymatic activity retained between 20 to 50 °C) and is highly thermostable (T50 >50 °C), affording excellent adaptive compatibility for bioprocesses. We further demonstrate that BAMF0695 can utilize renewable microalgae lipid as a substrate feedstock for HFA production. Moreover, through extensive site-directed and site-saturation mutagenesis, we isolated variants with high regioselectivity, a rare property for CYPs that usually generate complex regioisomer mixtures. BAMF0695 mutants were able to generate a single HFA regiosiomer (ω-1 or ω-2) with selectivities from 75 % up to 91 %, using C12 to C18 fatty acids. Overall, our results demonstrate the potential of a recent CYP and its variants for sustainable and green production of high-value HFAs.
Collapse
Affiliation(s)
- Li Zong
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, China
- Department of Biological and Chemical Engineering Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Zhengkang Shao
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, China
| | - Anita Ljubic
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800, Kgs. Lyngby, Denmark
- Current address: AGC Biologics, Vandtårnsvej 83, 2860, Søborg, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800, Kgs. Lyngby, Denmark
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, China
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Yingwu Wang
- Key Laboratory for Molecular Enzymology and Engineering The Ministry of Education, School of Life Science, Jilin University, Changchun, 130021, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| |
Collapse
|
4
|
Vincent T, Gaillet B, Garnier A. Oleic acid based experimental evolution of Bacillus megaterium yielding an enhanced P450 BM3 variant. BMC Biotechnol 2022; 22:20. [PMID: 35831844 PMCID: PMC9281120 DOI: 10.1186/s12896-022-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Unlike most other P450 cytochrome monooxygenases, CYP102A1 from Bacillus megaterium (BM3) is both soluble and fused to its redox partner forming a single polypeptide chain. Like other monooxygenases, it can catalyze the insertion of oxygen unto the carbon-hydrogen bond which can result in a wide variety of commercially relevant products for pharmaceutical and fine chemical industries. However, the instability of the enzyme holds back the implementation of a BM3-based biocatalytic industrial processes due to the important enzyme cost it would prompt. Results In this work, we sought to enhance BM3’s total specific product output by using experimental evolution, an approach not yet reported to improve this enzyme. By exploiting B. megaterium’s own oleic acid metabolism, we pressed the evolution of a new variant of BM3, harbouring 34 new amino acid substitutions. The resulting variant, dubbed DE, increased the conversion of the substrate 10-pNCA to its product p-nitrophenolate 1.23 and 1.76-fold when using respectively NADPH or NADH as a cofactor, compared to wild type BM3. Conclusions This new DE variant, showed increased organic cosolvent tolerance, increased product output and increased versatility in the use of either nicotinamide cofactors NADPH and NADH. Experimental evolution can be used to evolve or to create libraries of evolved BM3 variants with increased productivity and cosolvent tolerance. Such libraries could in turn be used in bioinformatics to further evolve BM3 more precisely. The experimental evolution results also supports the hypothesis which surmises that one of the roles of BM3 in Bacillus megaterium is to protect it from exogenous unsaturated fatty acids by breaking them down. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00750-w.
Collapse
Affiliation(s)
- Thierry Vincent
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Bruno Gaillet
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Alain Garnier
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
5
|
Abedi E, Fatemi F, Sefidbakht Y, Siadat SER. Development and characterization of a thermostable GH11/GH10 xylan degrading chimeric enzyme. Enzyme Microb Technol 2021; 149:109854. [PMID: 34311891 DOI: 10.1016/j.enzmictec.2021.109854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Xylanases are categorized into different family groups, two of which are glycoside hydrolases 10 (GH10) and 11 (GH11) families. These well-characterized xylanases demonstrate different modes of action in hydrolysis of xylans. Imitating certain types of microorganisms to produce bifunctional enzymes such as engineered xylanases has gained considerable attention among researchers. In this study, a recombinant chimeric enzyme (X11-10) was designed by fusing two thermostable xylanases through a peptide linker. The recombinant parental enzymes, xylanase 10 from fungus Bispora sp. MEY-1 (X10) and xylanase 11 from bacterium Thermobacillus xylanilyticus (X11), and their chimera were successfully expressed in Pichia pastoris (P. pastoris), purified, and characterized. Being active over a wide pH range, X11-10 chimera showed higher thermal stability, possessed a lower Km, and a higher catalytic efficiency (kcat/Km) in comparison to the parental enzymes. Also, molecular dynamics simulation (MDS) of X11-10 revealed that its active site residues were free to interact with substrate. This novel chimeric xylanase may have potential applications in different industrial processes since it can substitute two separate enzymes and therefore minimize the production costs.
Collapse
Affiliation(s)
- Ehsan Abedi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Fataneh Fatemi
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran.
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
| | - Seyed Ehsan Ranaei Siadat
- Sobhan Recombinant Protein, No. 22, 2nd Noavari St, Pardis Technology Park, 20th Km of Damavand Road, Tehran, Iran.
| |
Collapse
|
6
|
Optimization and Engineering of a Self-Sufficient CYP102 Enzyme from Bacillus amyloliquefaciens towards Synthesis of In-Chain Hydroxy Fatty Acids. Catalysts 2021. [DOI: 10.3390/catal11060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 (CYP) mediated enzymatic hydroxylation of fatty acids present a green alternative to chemical synthesis of hydroxy fatty acids (HFAs), which are high-value oleochemicals with various uses in materials industry and medical field. Although many CYPs require the presence of additional reductase proteins for catalytic activity, self-sufficient CYPs have their reductase partner naturally fused into their catalytic domain, leading to a greatly simplified biotransformation process. A recently discovered self-sufficient CYP, BAMF2522 from Bacillus amyloliquefaciens DSM 7, exhibits novel regioselectivity by hydroxylating in-chain positions of palmitic acid generating ω-1 to ω-7 HFAs, a rare regiodiversity profile among CYPs. Besides, F89I mutant of BAMF2522 expanded hydroxylation up to ω-9 position of palmitic acid. Here, we further characterize this enzyme by determining optimum temperature and pH as well as thermal stability. Moreover, using extensive site-directed and site-saturation mutagenesis, we obtained BAMF2522 variants that demonstrate greatly increased regioselectivity for in-chain positions (ω-4 to ω-9) of various medium to long chain fatty acids. Remarkably, when a six-residue mutant was reacted with palmitic acid, 84% of total product content was the sum of ω-7, ω-8 and ω-9 HFA products, the highest in-chain selectivity observed to date with a self-sufficient CYP. In short, our study demonstrates the potential of a recently identified CYP and its mutants for green and sustainable production of a variety of in-chain hydroxy enriched HFAs.
Collapse
|
7
|
Vincent T, Gaillet B, Garnier A. Optimisation of Cytochrome P450 BM3 Assisted by Consensus-Guided Evolution. Appl Biochem Biotechnol 2021; 193:2893-2914. [PMID: 33860879 DOI: 10.1007/s12010-021-03573-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Cytochrome P450 enzymes have attracted much interest over the years given their ability to insert oxygen into saturated carbon-hydrogen bonds, a difficult feat to accomplish by traditional chemistry. Much of the activity in this field has centered on the bacterial enzyme CYP102A1, or BM3, from Bacillus megaterium, as it has shown itself capable of hydroxylating/acting upon a wide range of substrates, thereby producing industrially relevant pharmaceuticals, fine chemicals, and hormones. In addition, unlike most cytochromes, BM3 is both soluble and fused to its natural redox partner, thus facilitating its use. The industrial use of BM3 is however stifled by its instability and its requirement for the expensive NADPH cofactor. In this work, we added several mutations to the BM3 mutant R966D/W1046S that enhanced the turnover number achievable with the inexpensive cofactors NADH and NBAH. These new mutations, A769S, S847G, S850R, E852P, and V978L, are localized on the reductase domain of BM3 thus leaving the oxidase domain intact. For NBAH-driven reactions by new mutant NTD5, this led to a 5.24-fold increase in total product output when compared to the BM3 mutant R966D/W1046S. For reactions driven by NADH by new mutant NTD6, this enhanced total product output by as much as 2.3-fold when compared to the BM3 mutant R966D/W1046S. We also demonstrated that reactions driven by NADH with the NTD6 mutant not only surpassed total product output achievable by wild-type BM3 with NADPH but also retained the ability to use this latter cofactor with greater total product output as well.
Collapse
Affiliation(s)
- Thierry Vincent
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Bruno Gaillet
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Alain Garnier
- Department of Chemical Engineering, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
8
|
Baklouti Z, Delattre C, Pierre G, Gardarin C, Abdelkafi S, Michaud P, Dubessay P. Biochemical Characterization of a Bifunctional Enzyme Constructed by the Fusion of a Glucuronan Lyase and a Chitinase from Trichoderma sp. Life (Basel) 2020; 10:life10100234. [PMID: 33049934 PMCID: PMC7601620 DOI: 10.3390/life10100234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Bifunctional enzymes created by the fusion of a glucuronan lyase (TrGL) and a chitinase (ThCHIT42) from Trichoderma sp. have been constructed with the aim to validate a proof of concept regarding the potential of the chimera lyase/hydrolase by analyzing the functionality and the efficiency of the chimeric constructions compared to parental enzymes. All the chimeric enzymes, including or nor linker (GGGGS), were shown functional with activities equivalent or higher to native enzymes. The velocity of glucuronan lyase was considerably increased for chimeras, and may involved structural modifications at the active site. The fusion has induced a slightly decrease of the thermostability of glucuronan lyase, without modifying its catalytic activity regarding pH variations ranging from 5 to 8. The biochemical properties of chitinase seemed to be more disparate between the different fusion constructions suggesting an impact of the linkers or structural interactions with the linked glucuronan lyase. The chimeric enzymes displayed a decreased stability to temperature and pH variations, compared to parental one. Overall, TrGL-ThCHIT42 offered the better compromise in terms of biochemical stability and enhanced activity, and could be a promising candidate for further experiments in the field of fungi Cell Wall-Degrading Enzymes (CWDEs).
Collapse
Affiliation(s)
- Zeineb Baklouti
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Département Génie Biologique, Université de Sfax, Unité de Biotechnologie des Algues, Ecole National d’Ingénieurs de Sfax, 3018 Sfax, Tunisia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Christine Gardarin
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Slim Abdelkafi
- Département Génie Biologique, Université de Sfax, Unité de Biotechnologie des Algues, Ecole National d’Ingénieurs de Sfax, 3018 Sfax, Tunisia;
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Correspondence:
| |
Collapse
|
9
|
A Novel Thermostable Cytochrome P450 from Sequence-Based Metagenomics of Binh Chau Hot Spring as a Promising Catalyst for Testosterone Conversion. Catalysts 2020. [DOI: 10.3390/catal10091083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biotechnological applications of cytochromes P450 show difficulties, such as low activity, thermal and/or solvent instability, narrow substrate specificity and redox partner dependence. In an attempt to overcome these limitations, an exploitation of novel thermophilic P450 enzymes from nature via uncultured approaches is desirable due to their great advantages that can resolve nearly all mentioned impediments. From the metagenomics library of the Binh Chau hot spring, an open reading frame (ORF) encoding a thermostable cytochrome P450—designated as P450-T3—which shared 66.6% amino acid sequence identity with CYP109C2 of Sorangium cellulosum So ce56 was selected for further identification and characterization. The ORF was synthesized artificially and heterologously expressed in Escherichia coli C43(DE3) using the pET17b system. The purified enzyme had a molecular weight of approximately 43 kDa. The melting temperature of the purified enzyme was 76.2 °C and its apparent half-life at 60 °C was 38.7 min. Redox partner screening revealed that P450-T3 was reduced well by the mammalian AdR-Adx4-108 and the yeast Arh1-Etp1 redox partners. Lauric acid, palmitic acid, embelin, retinoic acid (all-trans) and retinoic acid (13-cis) demonstrated binding to P450-T3. Interestingly, P450-T3 also bound and converted testosterone. Overall, P450-T3 might become a good candidate for biocatalytic applications on a larger scale.
Collapse
|
10
|
Fürst MJLJ, Kerschbaumer B, Rinnofner C, Migglautsch AK, Winkler M, Fraaije MW. Exploring the Biocatalytic Potential of a Self‐Sufficient Cytochrome P450 from
Thermothelomyces thermophila. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Bianca Kerschbaumer
- Austrian Centre of Industrial Biotechnology (ACIB) Petersgasse 14 8010 Graz Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB) Petersgasse 14 8010 Graz Austria
- Bisy e.U. Wetzawinkel 20 8200 Hofstätten/Raab Austria
| | - Anna K. Migglautsch
- Institute of Organic Chemistry, Graz University of TechnologyNAWI Graz 8010 Graz Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology (ACIB) Petersgasse 14 8010 Graz Austria
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of Groningen Nijenborgh 4 9747AG Groningen, The Netherlands
| |
Collapse
|
11
|
Abstract
One approach to bringing enzymes together for multienzyme biocatalysis is genetic fusion. This enables the production of multifunctional enzymes that can be used for whole-cell biotransformations or for in vitro (cascade) reactions. In some cases and in some aspects, such as expression and conversions, the fused enzymes outperform a combination of the individual enzymes. In contrast, some enzyme fusions are greatly compromised in activity and/or expression. In this Minireview, we give an overview of studies on fusions between two or more enzymes that were used for biocatalytic applications, with a focus on oxidative enzymes. Typically, the enzymes are paired to facilitate cofactor recycling or cosubstrate supply. In addition, different linker designs are briefly discussed. Although enzyme fusion is a promising tool for some biocatalytic applications, future studies could benefit from integrating the findings of previous studies in order to improve reliability and effectiveness.
Collapse
Affiliation(s)
- Friso S. Aalbers
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
12
|
Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2018; 84:AEM.01091-18. [PMID: 30171007 DOI: 10.1128/aem.01091-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022] Open
Abstract
The activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycete Phanerochaete chrysosporium was characterized. Recombinant CYP505D6 was produced in Escherichia coli and purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C9-18 carbon chain lengths as the substrates. Hydroxylation occurred at the ω-1 to ω-6 positions of such substrates with C9-15 carbon chain lengths, except for 1-dodecanol, which was hydroxylated at the ω-1 to ω-7 positions. Fatty acids were also substrates of CYP505D6. Based on the sequence alignment, the corresponding amino acid of Tyr51, which is located at the entrance to the active-site pocket in CYP102A1, was Val51 in CYP505D6. To understand the diverse hydroxylation mechanism, wild-type CYP505D6 and its V51Y variant and wild-type CYP102A1 and its Y51V variant were generated, and the products of their reaction with dodecanoic acid were analyzed. Compared with wild-type CYP505D6, its V51Y variant generated few products hydroxylated at the ω-4 to ω-6 positions. The products generated by wild-type CYP102A1 were hydroxylated at the ω-1 to ω-4 positions, whereas its Y51V variant generated ω-1 to ω-7 hydroxydodecanoic acids. These observations indicated that Val51 plays an important role in determining the regiospecificity of fatty acid hydroxylation, at least that at the ω-4 to ω-6 positions. Aromatic compounds, such as naphthalene and 1-naphthol, were also hydroxylated by CYP505D6. These findings highlight a unique broad substrate spectrum of CYP505D6, rendering it an attractive candidate enzyme for the biotechnological industry.IMPORTANCE Phanerochaete chrysosporium is a white-rot fungus whose metabolism of lignin, aromatic pollutants, and lipids has been most extensively studied. This fungus harbors 154 cytochrome P450-encoding genes in the genome. As evidenced in this study, P. chrysosporium CYP505D6, a fused protein of P450 and its reductase, hydroxylates fatty alcohols (C9-15) and fatty acids (C9-15) at the ω-1 to ω-7 or ω-1 to ω-6 positions, respectively. Naphthalene and 1-naphthol were also hydroxylated, indicating that the substrate specificity of CYP505D6 is broader than those of the known fused proteins CYP102A1 and CYP505A1. The substrate versatility of CYP505D6 makes this enzyme an attractive candidate for biotechnological applications.
Collapse
|
13
|
|
14
|
Xu LH, Du YL. Rational and semi-rational engineering of cytochrome P450s for biotechnological applications. Synth Syst Biotechnol 2018; 3:283-290. [PMID: 30533540 PMCID: PMC6263019 DOI: 10.1016/j.synbio.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 enzymes are ubiquitous heme-thiolate proteins performing regioselective and stereoselective oxygenation reactions in cellular metabolism. Due to their broad substrate scope and catalytic versatility, P450 enzymes are also attractive candidates for many industrial and biopharmaceutical applications. For particular uses, enzyme properties of P450s can be further optimized through directed evolution, rational, and semi-rational engineering approaches, all of which introduce mutations within the P450 structures. In this review, we describe the recent applications of these P450 engineering approaches and highlight the key regions and residues that have been identified using such approaches. These “hotspots” lie within critical functional areas of the P450 structure, including the active site, the substrate access channel, and the redox partner interaction interface.
Collapse
Affiliation(s)
- Lian-Hua Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Corresponding author.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
15
|
Saab-Rincón G, Alwaseem H, Guzmán-Luna V, Olvera L, Fasan R. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450 BM3 by Consensus-Guided Mutagenesis. Chembiochem 2018; 19:622-632. [PMID: 29276819 PMCID: PMC5941085 DOI: 10.1002/cbic.201700546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The multidomain, catalytically self-sufficient cytochrome P450 BM-3 from Bacillus megaterium (P450BM3 ) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus-guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3 . Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild-type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half-lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD-binding domain and that the optimal temperature (Topt ) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Valeria Guzmán-Luna
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
16
|
Tavanti M, Porter JL, Sabatini S, Turner NJ, Flitsch SL. Panel of New Thermostable CYP116B Self-Sufficient Cytochrome P450 Monooxygenases that Catalyze C−H Activation with a Diverse Substrate Scope. ChemCatChem 2018. [DOI: 10.1002/cctc.201701510] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Joanne L. Porter
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
17
|
Harris KL, Thomson RES, Strohmaier SJ, Gumulya Y, Gillam EMJ. Determinants of thermostability in the cytochrome P450 fold. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:97-115. [PMID: 28822812 DOI: 10.1016/j.bbapap.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions. However, process conditions impose different requirements on enzymes to those in which they have evolved naturally. Most natural environments are relatively mild, and therefore most P450s have not been selected in Nature for the ability to withstand temperatures above ~40°C, yet industrial processes frequently require extended incubations at much higher temperatures. Thus, there has been considerable interest and effort invested in finding or engineering thermostable P450 systems. Numerous P450s have now been identified in thermophilic organisms and analysis of their structures provides information as to mechanisms by which the P450 fold can be stabilized. In addition, protein engineering, particularly by directed or artificial evolution, has revealed mutations that serve to stabilize particular mesophilic enzymes of interest. Here we review the current understanding of thermostability as it applies to the P450 fold, gleaned from the analysis of P450s characterized from thermophilic organisms and the parallel engineering of mesophilic forms for greater thermostability. We then present a perspective on how this information might be used to design stable P450 enzymes for industrial application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Kurt L Harris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
18
|
Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol 2017; 99:274-281. [DOI: 10.1016/j.ijbiomac.2017.02.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022]
|
19
|
Koschorreck K, Wahrendorff F, Biemann S, Jesse A, Urlacher VB. Cell thermolysis – A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Jang HH, Shin SM, Ma SH, Lee GY, Joung YH, Yun CH. Role of Leu188 in the Fatty Acid Hydroxylase Activity of CYP102A1 from Bacillus megaterium. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ordered chimerogenesis applied to CYP2B P450 enzymes. Biochim Biophys Acta Gen Subj 2016; 1860:1395-403. [DOI: 10.1016/j.bbagen.2016.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
|
22
|
Geronimo I, Denning CA, Rogers WE, Othman T, Huxford T, Heidary DK, Glazer EC, Payne CM. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants. Biochemistry 2016; 55:3594-606. [PMID: 27267136 PMCID: PMC7422958 DOI: 10.1021/acs.biochem.6b00183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application. This study demonstrated that the heme domain R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) is destabilized because of the disruption of hydrophobic contacts and salt bridge interactions. This was directly observed from crystal structures of PM in the presence and absence of ligands (palmitic acid and metyrapone). The instability of the tertiary structure and heme environment of substrate-free PM was confirmed by pulse proteolysis and circular dichroism, respectively. Binding of the inhibitor, metyrapone, significantly stabilized PM, but the presence of the native substrate, palmitic acid, had no effect. On the basis of high-temperature molecular dynamics simulations, the lid domain, β-sheet 1, and Cys ligand loop (a β-bulge segment connected to the heme) are the most labile regions and, thus, potential sites for stabilizing mutations. Possible approaches to stabilization include improvement of hydrophobic packing interactions in the lid domain and introduction of new salt bridges into β-sheet 1 and the heme region. An understanding of the molecular factors behind the loss of stability of P450BM3 variants therefore expedites site-directed mutagenesis studies aimed at developing thermostability.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Catherine A. Denning
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - W. Eric Rogers
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Thaer Othman
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - David K. Heidary
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Edith C. Glazer
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
23
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
24
|
Expression and characterization of a novel endo-1,4-β-xylanase produced by Streptomyces griseorubens JSD-1 isolated from compost-treated soil. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Brühlmann F, Fourage L, Ullmann C, Haefliger OP, Jeckelmann N, Dubois C, Wahler D. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid. J Biotechnol 2014; 184:17-26. [DOI: 10.1016/j.jbiotec.2014.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 05/04/2014] [Indexed: 01/10/2023]
|
26
|
Scheps D, Honda Malca S, Richter SM, Marisch K, Nestl BM, Hauer B. Synthesis of ω-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microb Biotechnol 2013; 6:694-707. [PMID: 23941649 PMCID: PMC3815936 DOI: 10.1111/1751-7915.12073] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/09/2023] Open
Abstract
A bacterial P450 monooxygenase-based whole cell biocatalyst using Escherichia coli has been applied in the production of ω-hydroxy dodecanoic acid from dodecanoic acid (C12-FA) or the corresponding methyl ester. We have constructed and purified a chimeric protein where the fusion of the monooxygenase CYP153A from Marinobacter aquaeloei to the reductase domain of P450 BM3 from Bacillus megaterium ensures optimal protein expression and efficient electron coupling. The chimera was demonstrated to be functional and three times more efficient than other sets of redox components evaluated. The established fusion protein (CYP153AM. aq.-CPR) was used for the hydroxylation of C12-FA in in vivo studies. These experiments yielded 1.2 g l–1 ω-hydroxy dodecanoic from 10 g l–1 C12-FA with high regioselectivity (> 95%) for the terminal position. As a second strategy, we utilized C12-FA methyl ester as substrate in a two-phase system (5:1 aqueous/organic phase) configuration to overcome low substrate solubility and product toxicity by continuous extraction. The biocatalytic system was further improved with the coexpression of an additional outer membrane transport system (AlkL) to increase the substrate transfer into the cell, resulting in the production of 4 g l–1 ω-hydroxy dodecanoic acid. We further summarized the most important aspects of the whole-cell process and thereupon discuss the limits of the applied oxygenation reactions referring to hydrogen peroxide, acetate and P450 concentrations that impact the efficiency of the production host negatively.
Collapse
Affiliation(s)
- Daniel Scheps
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17:271-5. [DOI: 10.1016/j.cbpa.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
28
|
Gunne M, Urlacher VB. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLoS One 2012; 7:e52360. [PMID: 23285009 PMCID: PMC3527528 DOI: 10.1371/journal.pone.0052360] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
Fungal laccases are well investigated enzymes with high potential in diverse applications like bleaching of waste waters and textiles, cellulose delignification, and organic synthesis. However, they are limited to acidic reaction conditions and require eukaryotic expression systems. This raises a demand for novel laccases without these constraints. We have taken advantage of the laccase engineering database LccED derived from genome mining to identify and clone the laccase Ssl1 from Streptomyces sviceus which can circumvent the limitations of fungal laccases. Ssl1 belongs to the family of small laccases that contains only few characterized enzymes. After removal of the twin-arginine signal peptide Ssl1 was readily expressed in E. coli. Ssl1 is a small laccase with 32.5 kDa, consists of only two cupredoxin-like domains, and forms trimers in solution. Ssl1 oxidizes 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and phenolic substrates like 2,6-dimethoxy phenol, guaiacol, and syringaldazine. The kcat value for ABTS oxidation was at least 20 times higher than for other substrates. The optimal pH for oxidation reactions is substrate dependent: for phenolic substrates the highest activities were detected at alkaline conditions (pH 9.0 for 2,6-dimethoxy phenol and guaiacol and pH 8.0 for syringaldazine), while the highest reaction rates with ABTS were observed at pH 4.0. Though originating from a mesophilic organism, Ssl demonstrates remarkable stability at elevated temperatures (T1/2,60°C = 88 min) and in a wide pH range (pH 5.0 to 11.0). Notably, the enzyme retained 80% residual activity after 5 days of incubation at pH 11. Detergents and organic co-solvents do not affect Ssl1 stability. The described robustness makes Ssl1 a potential candidate for industrial applications, preferably in processes that require alkaline reaction conditions.
Collapse
Affiliation(s)
- Matthias Gunne
- Institute for Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Vlada B. Urlacher
- Institute for Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: .
| |
Collapse
|
29
|
Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R. Changing the Regioselectivity of a P450 from C15 to C11 Hydroxylation of Progesterone. Chembiochem 2012; 13:1161-6. [DOI: 10.1002/cbic.201100811] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Indexed: 11/11/2022]
|
30
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
31
|
Kang JY, Kim SY, Kim D, Kim DH, Shin SM, Park SH, Kim KH, Jung HC, Pan JG, Joung YH, Chi YT, Chae HZ, Ahn T, Yun CH. Characterization of diverse natural variants of CYP102A1 found within a species of Bacillus megaterium. AMB Express 2011; 1:1. [PMID: 21906327 PMCID: PMC3159907 DOI: 10.1186/2191-0855-1-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/28/2011] [Indexed: 12/03/2022] Open
Abstract
An extreme diversity of substrates and catalytic reactions of cytochrome P450 (P450) enzymes is considered to be the consequence of evolutionary adaptation driven by different metabolic or environmental demands. Here we report the presence of numerous natural variants of P450 BM3 (CYP102A1) within a species of Bacillus megaterium. Extensive amino acid substitutions (up to 5% of the total 1049 amino acid residues) were identified from the variants. Phylogenetic analyses suggest that this P450 gene evolve more rapidly than the rRNA gene locus. It was found that key catalytic residues in the substrate channel and active site are retained. Although there were no apparent variations in hydroxylation activity towards myristic acid (C14) and palmitic acid (C16), the hydroxylation rates of lauric acid (C12) by the variants varied in the range of >25-fold. Interestingly, catalytic activities of the variants are promiscuous towards non-natural substrates including human P450 substrates. It can be suggested that CYP102A1 variants can acquire new catalytic activities through site-specific mutations distal to the active site.
Collapse
|
32
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Jang HH, Kim DH, Ahn T, Yun CH. Functional and conformational modulation of human cytochrome P450 1B1 by anionic phospholipids. Arch Biochem Biophys 2010; 493:143-50. [DOI: 10.1016/j.abb.2009.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
|
34
|
Yantsevich AV, Gilep AA, Usanov SA. Conformational stability of cytochrome b5, enhanced green fluorescent protein, and their fusion protein Hmwb5-EGFP. BIOCHEMISTRY (MOSCOW) 2009; 74:518-27. [PMID: 19538125 DOI: 10.1134/s000629790905006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conformational stabilities of chimeric protein Hmwb(5)-EGFP and its constituents (cytochrome b(5) and enhanced green fluorescent protein) in guanidine hydrochloride solutions are reported in this paper. Intensity of fluorescence of tryptophan residues, intensity of EGFP fluorescence in the visible region, absorbance of cytochrome b(5) heme and EGFP fluorophore, and fluorescence anisotropy were used to follow the unfolding process. Thermodynamic parameters of protein unfolding were obtained using different approaches. The data were analyzed using a two-stage model and a linear extrapolation method. Unfolding of protein molecules was additionally monitored by measuring Stern-Volmer constants for tryptophan fluorescence quenching by acrylamide, cesium, and iodide. The accessibility of tryptophan residues of both components in the fusion molecule is lower than in the separate molecules. The thermodynamic stability of the protein globules in the fusion protein is much lower than in the individual protein molecules in solution, the difference in free energy of unfolding being more considerable for cytochrome b(5) (29 +/- 4 and 13 +/- 2 kJ/mol) than for EGFP (26 +/- 0.9 and 20 +/- 2.7 kJ/mol). The data indicate that artificial protein fusion can greatly affect total structural stability, and in the case of cytochrome b(5) and EGFP it results in decrease in free energy of transition from native to denatured unfolded form and consequently to decrease in thermodynamic stability of protein globules compared to the separate proteins.
Collapse
Affiliation(s)
- A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | | | | |
Collapse
|
35
|
Weis R, Winkler M, Schittmayer M, Kambourakis S, Vink M, Rozzell JD, Glieder A. A Diversified Library of Bacterial and Fungal Bifunctional Cytochrome P450 Enzymes for Drug Metabolite Synthesis. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Construction and engineering of a thermostable self-sufficient cytochrome P450. Biochem Biophys Res Commun 2009; 384:61-5. [DOI: 10.1016/j.bbrc.2009.04.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/11/2009] [Indexed: 11/18/2022]
|
37
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
38
|
Fan Z, Wagschal K, Lee CC, Kong Q, Shen KA, Maiti IB, Yuan L. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng 2009; 102:684-92. [DOI: 10.1002/bit.22112] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 2008; 79:931-40. [DOI: 10.1007/s00253-008-1500-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
40
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
41
|
McLean KJ, Girvan HM, Munro AW. Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opin Drug Metab Toxicol 2007; 3:847-63. [PMID: 18028029 DOI: 10.1517/17425255.3.6.847] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytochromes P450 (CYPs) are versatile oxidase catalysts that play pivotal roles in drug metabolism. They are highly regarded as biotechnological tools for their capacity to perform regio- and stereo-selective oxidations. Human CYPs source electrons for oxygen activation from one or more separate redox partner enzymes. However, several CYP enzymes are now known in which the CYP is covalently linked to a reductase system. Some of these systems offer distinct advantages over typical CYPs as efficient, self-contained units capable of important biotransformations, including synthesis of high value chemicals and pharmaceuticals. Protein engineering has been widely applied to produce variant CYP fusions with desirable activities. The review focuses on the nature and diversity of CYP/redox partner fusion enzymes and their biocatalytic potential.
Collapse
Affiliation(s)
- Kirsty J McLean
- University of Manchester, Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, UK
| | | | | |
Collapse
|