1
|
Ning Q, Chen L, Li F, Zhou G, Zhang C, Ma D, Zhang J. Tradeoffs of microbial life history strategies drive the turnover of microbial-derived organic carbon in coastal saline soils. Front Microbiol 2023; 14:1141436. [PMID: 37032859 PMCID: PMC10076556 DOI: 10.3389/fmicb.2023.1141436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Stable soil organic carbon (SOC) formation in coastal saline soils is important to improve arable land quality and mitigate greenhouse gas emissions. However, how microbial life-history strategies and metabolic traits regulate SOC turnover in coastal saline soils remains unknown. Here, we investigated the effects of microbial life history strategy tradeoffs on microbial carbon use efficiency (CUE) and microbial-derived SOC formation using metagenomic sequencing technology in different salinity soils. The results showed that high-salinity is detrimental to microbial CUE and microbial-derived SOC formation. Moreover, the regulation of nutrients stoichiometry could not mitigate adverse effects of salt stress on microbial CUE, which indicated that microbial-derived SOC formation is independent of stoichiometry in high-salinity soil. Low-salinity soil is dominated by a high growth yield (Y) strategy, such as higher microbial biomass carbon and metabolic traits which are related to amino acid metabolism, carbohydrate metabolism, and cell processes. However, high-salinity soil is dominated by stress tolerance (S) (e.g., higher metabolic functions of homologous recombination, base excision repair, biofilm formation, extracellular polysaccharide biosynthesis, and osmolytes production) and resource acquisition (A) strategies (e.g., higher alkaline phosphatase activity, transporters, and flagellar assembly). These trade-offs of strategies implied that resource reallocation took place. The high-salinity soil microbes diverted investments away from growth yield to microbial survival and resource capture, thereby decreasing biomass turnover efficiency and impeding microbial-derived SOC formation. Moreover, altering the stoichiometry in low-salinity soil caused more investment in the A-strategy, such as the production of more β-glucosidase and β-N-acetyl-glucosaminidase, and increasing bacterial chemotaxis, which thereby reduced microbial-derived SOC formation. Our research reveals that shift the microbial community from S- and A- strategies to the Y-strategy is important to increase the microbial CUE, and thus enhance SOC turnover in coastal saline soils.
Collapse
Affiliation(s)
- Qi Ning
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Chen
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Fang Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Guixiang Zhou
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Congzhi Zhang
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Donghao Ma
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- Fengqiu Experimental Station of National Ecosystem Research Network of China, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiabao Zhang,
| |
Collapse
|
2
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
3
|
Woo JH, Kim HS, Park NH, Suk HY. Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity. J Microbiol 2021; 59:675-680. [PMID: 34061338 DOI: 10.1007/s12275-021-1023-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)-SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a whole-cell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.
Collapse
Affiliation(s)
- Jung-Hee Woo
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea.
| | - Hae-Seon Kim
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea
| | - Nyun-Ho Park
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Zhang J, Liu R, Xi S, Cai R, Zhang X, Sun C. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea. ISME JOURNAL 2020; 14:2261-2274. [PMID: 32457501 PMCID: PMC7608252 DOI: 10.1038/s41396-020-0684-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022]
Abstract
Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA in converting thiosulfate to tetrathionate (−O3S–S–S–SO3−), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. Notably, homologs of TsdA, SoxB, and SdoA/SdoB widely exist across the bacteria including in Erythrobacter species derived from different environments. This strongly indicates that this novel thiosulfate oxidation pathway might be frequently used by microbes and plays an important role in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Jing Zhang
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shichuan Xi
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
5
|
Jin H, Li Y, Zhang Q, Lin S, Yang Z, Ding G. Enantioselective Hydrolysis of Styrene Oxide and Benzyl Glycidyl Ether by a Variant of Epoxide Hydrolase from Agromyces mediolanus. Mar Drugs 2019; 17:E367. [PMID: 31226863 PMCID: PMC6627055 DOI: 10.3390/md17060367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Enantiopure epoxides are versatile synthetic intermediates for producing optically active pharmaceuticals. In an effort to provide more options for the preparation of enantiopure epoxides, a variant of the epoxide hydrolase (vEH-Am) gene from a marine microorganism Agromyces mediolanus was synthesized and expressed in Escherichia coli. Recombiant vEH-Am displayed a molecular weight of 43 kDa and showed high stability with a half-life of 51.1 h at 30 °C. The purified vEH-Am exhibited high enantioselectivity towards styrene oxide (SO) and benzyl glycidyl ether (BGE). The vEH-Am preferentially converted (S)-SO, leaving (R)-SO with the enantiomeric excess (ee) >99%. However, (R)-BGE was preferentially hydrolyzed by vEH-Am, resulting in (S)-BGE with >99% ee. To investigate the origin of regioselectivity, the interactions between vEH-Am and enantiomers of SO and BGE were analyzed by molecular docking simulation. In addition, it was observed that the yields of (R)-SO and (S)-BGE decreased with the increase of substrate concentrations. The yield of (R)-SO was significantly increased by adding 2% (v/v) Tween-20 or intermittent supplementation of the substrate. To our knowledge, vEH-Am displayed the highest enantioselectivity for the kinetic resolution of racemic BGE among the known EHs, suggesting promising applications of vEH-Am in the preparation of optically active BGE.
Collapse
Affiliation(s)
- Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Qianwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Saijun Lin
- Hangzhou Institute for Food and Drug Control, Hangzhou 310019, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Complete Genome Sequence of the Marine Carbazole-Degrading Bacterium Erythrobacter sp. Strain KY5. Microbiol Resour Announc 2018; 7:MRA00935-18. [PMID: 30533913 PMCID: PMC6256505 DOI: 10.1128/mra.00935-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023] Open
Abstract
We determined the complete genome sequence of Erythrobacter sp. strain KY5, a bacterium isolated from Tokyo Bay and capable of degrading carbazole. We determined the complete genome sequence of Erythrobacter sp. strain KY5, a bacterium isolated from Tokyo Bay and capable of degrading carbazole. The genome consists of a 3.3-Mb circular chromosome that carries the gene clusters involved in carbazole degradation and biosynthesis of the photosynthetic apparatus of aerobic anoxygenic phototrophic bacteria.
Collapse
|
7
|
Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594. Sci Rep 2018; 8:803. [PMID: 29339760 PMCID: PMC5770381 DOI: 10.1038/s41598-018-19279-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are a group of enzymes that can inactivate most commonly used β-lactam-based antibiotics. Among MBLs, New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an urgent threat to public health as evidenced by its success in rapidly disseminating worldwide since its first discovery. Here we report the biochemical and genetic characteristics of a novel MBL, ElBla2, from the marine bacterium Erythrobacter litoralis HTCC 2594. This enzyme has a higher amino acid sequence similarity to NDM-1 (56%) than any previously reported MBL. Enzymatic assays and secondary structure alignment also confirmed the high similarity between these two enzymes. Whole genome comparison of four Erythrobacter species showed that genes located upstream and downstream of elbla2 were highly conserved, which may indicate that elbla2 was lost during evolution. Furthermore, we predicted two prophages, 13 genomic islands and 25 open reading frames related to insertion sequences in the genome of E. litoralis HTCC 2594. However, unlike NDM-1, the chromosome encoded ElBla2 did not locate in or near these mobile genetic elements, indicating that it cannot transfer between strains. Finally, following our phylogenetic analysis, we suggest a reclassification of E. litoralis HTCC 2594 as a novel species: Erythrobacter sp. HTCC 2594.
Collapse
|
8
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
9
|
Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol 2015; 99:9511-21. [DOI: 10.1007/s00253-015-6716-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
10
|
Draft Genome Sequence of Erythrobacter vulgaris Strain O1, a Glycosyl Hydrolase-Producing Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00457-15. [PMID: 25977433 PMCID: PMC4432339 DOI: 10.1128/genomea.00457-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrobacter vulgaris strain O1, a moderate halophile, was isolated from a beach in Johor, Malaysia. Here, we present the draft genome and suggest potential applications of this bacterium.
Collapse
|
11
|
Saini P, Wani SI, Kumar R, Chhabra R, Chimni SS, Sareen D. Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis. Protein Expr Purif 2014; 104:71-84. [PMID: 25229949 DOI: 10.1016/j.pep.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/17/2022]
Abstract
Epoxide hydrolases (EHs), are enantioselective enzymes as they catalyze the kinetic resolution of racemic epoxides into the corresponding enantiopure vicinal diols, which are useful precursors in the synthesis of chiral pharmaceutical compounds. Here, we have identified and cloned two putative epoxide hydrolase genes (cpeh and sneh) from marine bacteria, Candidatus pelagibacter ubique and terrestrial bacteria, Stackebrandtia nassauensis, respectively and overexpressed them in pET28a vector in Escherichia coli BL21(DE3). The CPEH protein (42kDa) was found to be overexpressed as inactive inclusion bodies while SNEH protein (40kDa) was found to form soluble aggregates. In this study, the recombinant CPEH was successfully transformed from insoluble aggregates to the soluble and functionally active form, using pCold TF vector, though with low EH activity. To prevent the soluble aggregate formation of SNEH, it was co-expressed with GroEL/ES chaperone and was also fused with trigger factor (TF) chaperone at its N-terminus. The TF chaperone-assisted correct folding of SNEH led to a purified active EH with a specific activity of 3.85μmol/min/mg. The pure enzyme was further used to biocatalyze the hydrolysis of 10mM benzyl glycidyl ether (BGE) and α-methyl styrene oxide (MSO) with an enantiomeric excess of the product (eep) of 86% and 73% in 30 and 15min, respectively. In conclusion, this is the first report about the heterologous expression of epoxide hydrolases using TF as a molecular chaperone in pCold TF expression vector, resulting in remarkable increase in the solubility and activity of the otherwise improperly folded recombinant epoxide hydrolases.
Collapse
Affiliation(s)
- Priya Saini
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh 160 014, India.
| | - Shadil Ibrahim Wani
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh 160 014, India.
| | - Ranjai Kumar
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh 160 014, India.
| | - Ravneet Chhabra
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh 160 014, India.
| | | | - Dipti Sareen
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh 160 014, India.
| |
Collapse
|
12
|
Jiménez DJ, Dini-Andreote F, Ottoni JR, de Oliveira VM, van Elsas JD, Andreote FD. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites. Microb Biotechnol 2014; 8:604-13. [PMID: 25171437 PMCID: PMC4408192 DOI: 10.1111/1751-7915.12157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747AG, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives. Biotechnol Lett 2012; 35:599-606. [PMID: 23242500 DOI: 10.1007/s10529-012-1114-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.
Collapse
|
14
|
Kumar R, Wani SI, Chauhan NS, Sharma R, Sareen D. Cloning and characterization of an epoxide hydrolase from Cupriavidus metallidurans-CH34. Protein Expr Purif 2011; 79:49-59. [PMID: 21515382 DOI: 10.1016/j.pep.2011.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/01/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
Abstract
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ∼2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.
Collapse
Affiliation(s)
- Ranjai Kumar
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|
15
|
Woo JH, Hwang YO, Kang JH, Lee HS, Kim SJ, Kang SG. Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans. J Biosci Bioeng 2010; 110:295-7. [DOI: 10.1016/j.jbiosc.2010.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 02/04/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
16
|
Genome sequence of the oligotrophic marine Gammaproteobacterium HTCC2143, isolated from the Oregon Coast. J Bacteriol 2010; 192:4530-1. [PMID: 20601481 DOI: 10.1128/jb.00683-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain HTCC2143 was isolated from Oregon Coast surface waters using dilution-to-extinction culturing. Here we present the genome of strain HTCC2143 from the BD1-7 clade of the oligotrophic marine Gammaproteobacteria group. The genome of HTCC2143 contains genes for carotenoid biosynthesis and proteorhodopsin and for proteins that have potential biotechnological significance: epoxide hydrolases, Baeyer-Villiger monooxygenases, and polyketide synthases.
Collapse
|
17
|
Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376 [corrected]. J Biosci Bioeng 2010; 109:539-44. [PMID: 20471590 DOI: 10.1016/j.jbiosc.2009.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/19/2009] [Accepted: 11/26/2009] [Indexed: 11/21/2022]
Abstract
As a continuous effort of developing highly enantioselective epoxide hydrolase from marine microorganisms, it was found that Maritimibacter alkaliphilus KCCM 42376 [corrected] was highly enantioselective toward racemic glycidyl phenyl ether (GPE). An open reading frame (ORF) encoding a putative epoxide hydrolase (EHase) was cloned from the genome of Maritimibacter alkaliphilus KCCM 42376 [corrected], followed by expression and purification in Escherichia coli. The purified EHase (REH) hydrolyzed (S)-GPE preferentially over (R)-GPE. Enantiopure (R)-GPE from kinetic resolution of 29.2 mM racemic GPE using the purified REH could be obtained with enantiopurity of more than 99.9% enantiomeric excess (ee) and 38.4% yield (theoretical, 50%) within 20 min (enantiomeric ratio (E-value): 38.4). The enantioselective activity of REH toward GPE was also confirmed by the analysis of the vicinal diol, 3-phenoxy-1,2-propanediol. To our knowledge, this study demonstrates the highest enantioselective resolution of racemic GPE using a purified biocatalyst among the known native EHases.
Collapse
|
18
|
Jeon JH, Kim JT, Kang SG, Lee JH, Kim SJ. Characterization and its potential application of two esterases derived from the arctic sediment metagenome. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:307-316. [PMID: 18814017 DOI: 10.1007/s10126-008-9145-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 09/01/2008] [Indexed: 05/26/2023]
Abstract
Two esterase genes (designated as estAT1 and estAT11, respectively) were cloned by activity-based screening of a fosmid library constructed with seashore sediment sample of the Arctic. The sequence analysis of the genes revealed that these esterase genes encoded proteins of 303 and 312 amino acids, respectively, and showed 40-50% identities to members of the hormone-sensitive lipase (HSL) family retaining a catalytic triad with a conserved GDSAG sequence and an oxyanion hole (HGGG). The esterases genes were overexpressed in Escherichia coli by co-expressing GroEL-GroES chaperonine, and the recombinant proteins (rEstAT1 and rEstAT11) were purified to homogeneity. The purified EstAT1 and EstAT11 were active in a broad range of temperature from 20 to 40 degrees C with an optimum temperature at 30 degrees C. The activation energies of rEstAT1 and rEstAT11 to hydrolyze p-nitrophenyl esters of butyrate were determined to be 12.65 kcal/mol and 11.26 kcal/mol, respectively, indicating that they are cold-adapted esterases. The purified EstAT1 and EstAT11 could hydrolyze racemic ofloxacin esters, and further rEstAT11 hydrolyzed preferentially (S)-racemic ofloxacin butyl ester with an enantiomeric excess (ee(p)) value of 70.3%. This work represents an example that develops enzymes from the Arctic using metagenomic approach, potentially applicable to chiral resolution of heat-labile substrates.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- Marine Biotechnology Research Centre, Korean Ocean Research & Development Institute, Ansan, South Korea
| | | | | | | | | |
Collapse
|
19
|
Abstract
Erythrobacter litoralis has been known as a bacteriochlorophyll a-containing, aerobic, anoxygenic, phototrophic bacterium. Here we announce the complete genome sequence of E. litoralis HTCC2594, which is devoid of phototrophic potential. E. litoralis HTCC2594, isolated by dilution-to-extinction culturing from seawater, could not carry out aerobic anoxygenic phototrophy and lacked genes for bacteriochlorophyll a biosynthesis and photosynthetic reaction center proteins.
Collapse
|
20
|
Woo JH, Kang JH, Kang SG, Hwang YO, Kim SJ. Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 2008; 82:873-81. [PMID: 19083233 DOI: 10.1007/s00253-008-1791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
A gene encoding a putative epoxide hydrolase (EHase) was identified by analyzing an open reading frame of the genome sequence of Novosphingobium aromaticivorans, retaining the conserved catalytic residues such as the catalytic triad (Asp177, Glu328, and His355) and the oxyanion hole. The enantioselective EHase gene (neh) was cloned, and the recombinant EHase could be purified to apparent homogeneity by one step of metal affinity chromatography and further characterized. The purified N. aromaticivorans enantioselective epoxide hydrolase (NEH) showed enantioselective hydrolysis toward styrene oxide, glycidyl phenyl ether, epoxybutane, and epichlorohydrin. The optimal EHase activity toward styrene oxide occurred at pH 6.5 and 45 degrees C. The purified NEH could preferentially hydrolyze (R)-styrene oxide with enantiomeric excess of more than 99% and 11.7% yield after 20-min incubation at an optimal condition. The enantioselective hydrolysis of styrene oxide was also confirmed by the analysis of the vicinal diol, 1-phenyl-1,2-ethanediol. The hydrolyzing rates of the purified NEH toward epoxide substrates were not affected by as high as 100 mM racemic styrene oxide.
Collapse
Affiliation(s)
- Jung-Hee Woo
- Marine Biotechnology Research Centre, Korea Ocean Research & Development Institute, P.O. Box 29, Ansan, 425-600, South Korea
| | | | | | | | | |
Collapse
|
21
|
Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 2008; 7:27. [PMID: 18717988 PMCID: PMC2538500 DOI: 10.1186/1475-2859-7-27] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/21/2008] [Indexed: 11/11/2022] Open
Abstract
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.
Collapse
Affiliation(s)
- Jonathan Kennedy
- Environmental Research Institute, University College Cork, National University of Ireland, Lee Road, Cork, Ireland.
| | | | | |
Collapse
|
22
|
Hwang YO, Kang SG, Woo JH, Kwon KK, Sato T, Lee EY, Han MS, Kim SJ. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in Erythrobacter spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:366-373. [PMID: 18214609 DOI: 10.1007/s10126-007-9070-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/02/2007] [Accepted: 11/15/2007] [Indexed: 05/25/2023]
Abstract
To develop an enantioselective epoxide hydrolase (EHase) from marine microorganisms, marine samples were collected from a variety of marine environments. Strains isolated by the capability of living on styrene oxide (SO) were screened for retaining enantioselective EHase activities toward SO by combining spectrophotometric, GC, and HPLC analysis. Consequently, one strain, JCS358, was selected, and the sequence analysis of 16S rRNA gene showed that the strain belonged to Erythrobacter cluster. Twelve additional Erythrobacter strains from this study or acquired from culture collections were thereby tested for displaying EHase activities, and most of tested strains showed enantioselective hydrolysis toward SO and glycidyl phenyl ether. Kinetic resolution of racemic SO using whole cell of Erythrobacter sp. JCS358 was performed. Enantiopure (S)-SO could be obtained with an enantiomeric excess (ee) higher than 99% after 15 h incubation. The determination of 1-phenyl-1,2-ethanediol configuration derived from racemic SO confirmed the enantioselective hydrolyzing activity of Erythrobacter sp. JCS358.
Collapse
Affiliation(s)
- Young-Ok Hwang
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG, Kim SJ, Sato T, Kato C. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207-2211. [PMID: 17911284 DOI: 10.1099/ijs.0.64863-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel marine bacterium, strain JCS350T, was isolated from marine sediment samples collected from a cold-seep area. The 16S rRNA gene sequence of the isolate showed high similarity to that of Erythrobacter
luteolus SW-109T (95.9 % sequence similarity). Lower 16S rRNA gene sequence similarities were shown to other members of the genus Erythrobacter (94.6–95.4 %) and members of the genus Porphyrobacter (94.5–95.2 %). Phylogenetic analysis with all members of the family Erythrobacteraceae and several members of the family Sphingomonadaceae revealed that the isolate formed a phyletic line with [Erythrobacter] luteolus that was distinct from other members of the family Erythrobacteraceae. The dominant fatty acids of strain JCS350T were 18 : 1ω7c, 16 : 1ω7c and cyclopropane 17 : 0. The major respiratory quinone was ubiquinone 10. The DNA G+C content was 54.5 mol%. The isolate did not contain bacteriochlorophyll a. Optimal growth required the presence of 2 % (w/v) NaCl with either 0.18 % CaCl2 or 0.59 % MgCl2, at pH 6.5 and at 35 °C. On the basis of the evidence of this polyphasic taxonomic study, strain JCS350T should be classified in a novel genus and species in the family Erythrobacteraceae, for which the name Altererythrobacter epoxidivorans gen. nov., sp. nov. is proposed. The misclassified species [Erythrobacter] luteolus is transferred to the new genus as Altererythrobacter luteolus comb. nov. The type strain of Altererythrobacter epoxidivorans is JCS350T (=KCCM 42314T =JCM 13815T) and the type strain of Altererythrobacter luteolus is SW-109T (=KCTC 12311T =JCM 12599T).
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/enzymology
- Alphaproteobacteria/genetics
- Alphaproteobacteria/isolation & purification
- Bacteriochlorophyll A/analysis
- Base Composition
- Calcium Chloride/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Epoxide Hydrolases/metabolism
- Fatty Acids/analysis
- Genes, rRNA
- Geologic Sediments/microbiology
- Hydrogen-Ion Concentration
- Magnesium Chloride/metabolism
- Molecular Sequence Data
- Phylogeny
- Quinones/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sodium Chloride/metabolism
- Temperature
Collapse
Affiliation(s)
- Kae Kyoung Kwon
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Jung-Hee Woo
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Sung-Hyun Yang
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Ji-Hyun Kang
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Sang-Jin Kim
- Marine Biotechnology Research Center, Korea Ocean Research & Development Institute, PO Box 29, Ansan 425-600, Republic of Korea
| | - Takako Sato
- Extremobiosphere Research Center, JAMSTEC, 2-15 Natsushima-cho, Yokosuka City, Kanagawa 237-0061, Japan
| | - Chiaki Kato
- Extremobiosphere Research Center, JAMSTEC, 2-15 Natsushima-cho, Yokosuka City, Kanagawa 237-0061, Japan
| |
Collapse
|
24
|
Park SY, Kim JT, Kang SG, Woo JH, Lee JH, Choi HT, Kim SJ. A new esterase showing similarity to putative dienelactone hydrolase from a strict marine bacterium, Vibrio sp. GMD509. Appl Microbiol Biotechnol 2007; 77:107-15. [PMID: 17712554 DOI: 10.1007/s00253-007-1134-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Vibrio sp. GMD509, a marine bacterium isolated from eggs of the sea hare, exhibited lipolytic activity on tributyrin (TBN) plate, and the gene representing lipolytic activity was cloned. As a result, an open reading frame (ORF) consisting of 1,017 bp (338 aa) was found, and the deduced amino acid sequence of the ORF showed low similarity (< 20%) to alpha/beta hydrolases such as dienelactone hydrolases and esterase/lipase with G-X(1)-S-X(2)-G sequence conserved. Phylogenetic analysis suggested that the protein belonged to a new family of esterase/lipase together with various hypothetical proteins. The enzyme was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme (Vlip509) showed the best hydrolyzing activity toward p-nitrophenyl butyrate (C(4)) among various p-nitrophenyl esters (C(2) to C(18)), and optimal activity of Vlip509 occurred at 30 degrees C and pH 8.5, respectively. Kinetic parameters toward p-nitrophenyl butyrate were determined as K (m) (307 muM), k (cat) (5.72 s(-1)), and k (cat)/K (m) (18.61 s(-1) mM(-1)). Furthermore, Vlip509 preferentially hydrolyzed the S-enantiomer of racemic ofloxacin ester. Despite its sequence homology to dienelactone hydrolase, Vlip509 showed no dienelactone hydrolase activity. This study represents the identification of a novel lipolytic enzyme from marine environment.
Collapse
Affiliation(s)
- Sang-Yi Park
- Korea Ocean Research and Development Institute, Ansan P.O. Box 29, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|