1
|
Al-Awadi AQ, Ahmed ME, Alfaifi MY, Shati AA, Elbehairi SEI, Aufy M, Hussein AM. Antibacterial and therapeutic effects of vancomycin-resistant Staphylococcus aureus bacteriocin (VRSAcin) in the treatment of VRSA skin infection in mice. Microb Pathog 2025; 205:107729. [PMID: 40403990 DOI: 10.1016/j.micpath.2025.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Vancomycin Staphylococcus aureus (VRSA) is a strain of S. aureus that is considered the main cause of bacterial skin and soft tissue infections. It has acquired resistance to vancomycin and represents a therapeutic challenge. The current study aimed to compare the possible therapeutic effects of VRSA bacteriocin (VRSAcin) on the treatment of skin infection in mice with those of an antibiotic (linezolid). The results showed that of the fifty swabs obtained from human skin wounds. One isolate was selected for VRSAcin extraction depending on its antibiotic resistance using an antibiotic susceptibility test.An agar well diffusion test was used to determine bacteriocin's antibacterial activity, as well as its a minimum inhibitory concentration, minimum bactericidal concentration, and antibiofilm efficiency against gram-positive and gram-negative bacteria that were resistant to many medicines. The freshly developed antibacterial substance VRSAcin shows promise. Bacteriocin from VRSA was extracted and studied the optimal conditions for the Production following Purification of bacteriocin by ammonium sulfate precipitation followed by cation-exchange chromatography. The molecular weight of bacteriocin about (29 kDa) were determined by Sodium Dodecyl Sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The typical conditions for the production of VRSAcin include a pH of 7 and a temperature of 37 °C for 48 h. In mice, VRSA-contaminated wounds revealed severe tissue distraction and inflammation that extended to the hypodermis, while VRSA-treated skin showed mild changes and localized lesions to the epidermis and upper dermis. The skin of linezolid ointment-treated mice showed moderate to severe changes. In conclusion, VRSA strain infections in human burned skin were more common than expected. In vivo studies in mice indicated that wounded skin infected with VRSA can be treated with VRSAcin as an antibacterial agent that promotes healing processes with obvious superiority to linezolid ointment. As a result, the VRSA develops bacteriocins that are appropriate for regulating AMR, Gram-positive and Gram-negative bacteria, and may be useful in wound dressings.
Collapse
Affiliation(s)
- Ahmed Qassim Al-Awadi
- Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad city, Iraq
| | - Mais Emad Ahmed
- Department of Biology/College of Science/University of Baghdad, Baghdad city, Iraq.
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha, 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, 9004, Saudi Arabia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha, 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha, 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, 9004, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Bessesen MT. Interventions targeting the nasal microbiome to eradicate methicillin-resistant Staphylococcusaureus. Clin Microbiol Infect 2025; 31:190-193. [PMID: 39481681 DOI: 10.1016/j.cmi.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen in many sites, including the bloodstream, skin and soft tissue, bone and joints. When infection is caused by methicillin-resistant S. aureus (MRSA), therapy is more difficult and outcomes are less favourable. Nasal colonization is associated with increased risk for MRSA infections. The nasal microbiome may play a role in risk for nasal colonization and infection. OBJECTIVES To review the role of the microbiome in MRSA nasal colonization and infection. SOURCES Peer-reviewed literature identified in a MEDLINE search using MRSA, S. aureus, prebiotic and microbiota as search terms. CONTENT Reduction of S. aureus nasal colonization has been shown to reduce risk of S. aureus infections, but decolonization methods are imperfect. The role of the nasal microbiome in host defence against S. aureus colonization and infection is explored. Numerous organisms have been shown to be negatively associated with S. aureus colonization. The antimicrobial molecules produced by these organisms are an active area of research. IMPLICATIONS Future research should focus on development of safe and effective molecules that can inhibit S. aureus in the nasal vestibule. Damage to the diverse nasal microbiota by unnecessary antibiotics should be avoided.
Collapse
Affiliation(s)
- Mary T Bessesen
- Infectious Diseases Section, Department of Medicine, Veterans Affairs Eastern Colorado Healthcare System, 1700 North Wheeling, Aurora, CO, USA; Infectious Diseases Division, Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Xu B, Wang L, Yang C, Yan R, Zhang P, Jin M, Du H, Wang Y. Specifically targeted antimicrobial peptides synergize with bacterial-entrapping peptide against systemic MRSA infections. J Adv Res 2025; 67:301-315. [PMID: 38266820 PMCID: PMC11725144 DOI: 10.1016/j.jare.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION The design of precision antimicrobials aims to personalize the treatment of drug-resistant bacterial infections and avoid host microbiota dysbiosis. OBJECTIVES This study aimed to propose an efficient de novo design strategy to obtain specifically targeted antimicrobial peptides (STAMPs) against methicillin-resistant Staphylococcus aureus (MRSA). METHODS We evaluated three strategies designed to increase the selectivity of antimicrobial peptides (AMPs) for MRSA and mainly adopted an advanced hybrid peptide strategy. First, we proposed a traversal design to generate sequences, and constructed machine learning models to predict the anti-S. aureus activity levels of unknown peptides. Subsequently, six peptides were predicted to have high activity, among which, a broad-spectrum AMP (P18) was selected. Finally, the two targeting peptides from phage display libraries or lysostaphin were used to confer specific anti-S. aureus activity to P18. STAMPs were further screened out from hybrid peptides based on their in vitro and in vivo activities. RESULTS An advanced hybrid peptide strategy can enhance the specific and targeted properties of broad-spectrum AMPs. Among 25 assessed peptides, 10 passed in vitro tests, and two peptides containing one bacterial-entrapping peptide (BEP) and one STAMP passed an in vivo test. The lead STAMP (P18E6) disrupted MRSA cell walls and membranes, eliminated established biofilms, and exhibited desirable biocompatibility, systemic distribution and efficacy, and immunomodulatory activity in vivo. Furthermore, a bacterial-entrapping peptide (BEP, SP5) modified from P18, self-assembled into nanonetworks and rapidly entrapped MRSA. SP5 synergized with P18E6 to enhance antibacterial activity in vitro and reduced systemic MRSA infections. CONCLUSIONS This strategy may aid in the design of STAMPs against drug-resistant strains, and BEPs can serve as powerful STAMP adjuvants.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Rong Yan
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Pan Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China.
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Momen S, Soleimani N, Azizmohseni F, Ahmadbeigi Y, Borhani S, Amini-Bayat Z. Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability. AMB Express 2024; 14:143. [PMID: 39724336 DOI: 10.1186/s13568-024-01812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance. ZAM-MSC chimeric endolysin has three domains derived from SAL1 and lysostaphin, which target the peptide bridge of peptidoglycan. In this study purified ZAM-MSC (with yield of 30 mg/lit) had bactericidal activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations (2.38 μg/ml and 1.88 μg/ml, respectively). The antibacterial spectrum revealed that ZAM-MSC was active against diverse Staphylococci. it has maintained 100% stability after 24 h incubation in pH 5 to 10 against S. aureus, as well as demonstrated significant thermostability and maintained nearly its full activity at different temperatures (4-42 °C) up to 1 day of incubation. The anti-biofilm activity of various concentrations of ZAM-MSC against MSSA and MRSA biofilms was not dose-dependent, and antibiofilm activity was observed even at low concentrations (14 μg/ml). Further, the molecular dynamics simulations demonstrated that the ZAM-MSC chimer and its parent proteins remained dynamically stable, showing similar flexibility despite the size and hydrogen bond number differences. In conclusion, the study reveals that chimeric ZAM-MSC is a distinctive enzyme with exceptional biochemical properties and rapid lytic activity against Staphylococci.
Collapse
Affiliation(s)
- Sanaz Momen
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farzaneh Azizmohseni
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Yasaman Ahmadbeigi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seddigheh Borhani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Amini-Bayat
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
5
|
Olson EG, Dittoe DK, Micciche AC, Stock DA, Rubinelli PM, Rothrock MJ, Ricke SC. Microbiome analyses of poultry feeds: Part I. Comparison of five different DNA extraction methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:378-389. [PMID: 38779902 DOI: 10.1080/03601234.2024.2353002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Given extensive variability in feed composition, the absence of a dedicated DNA extraction kit for poultry feed underscores the need for an optimized extraction technique for reliable downstream sequencing analyses. This study investigates the impact of five DNA extraction techniques: Qiagen QIAamp DNA Stool Mini Kit (Qiagen), modified Qiagen with Lysing Matrix B (MQ), modified Qiagen with celite purification (MQC), polyethylene glycol (PEG), and 1-Day Direct. Genomic DNA amplification and Illumina MiSeq sequencing were conducted. QIIME2-2021.4 facilitated data analysis, revealing significant diversity and compositional differences influenced by extraction methods. Qiagen exhibited lower evenness and richness compared to other methods. 1-Day Direct and PEG enhanced bacterial diversities by employing bead beating and lysozyme. Despite similar taxonomic resolution, the Qiagen kit provides a rapid, consistent method for assessing poultry feed microbiomes. Modified techniques (MQ and MQC) improve DNA purification, reducing bias in commercial poultry feed samples. PEG and 1-Day Direct methods were effective but may require standardization. Overall, this study underscores the importance of optimized extraction techniques in poultry feed analysis, with potential implications for future standardization of effective methods.
Collapse
Affiliation(s)
- E G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D K Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - A C Micciche
- Bio-Tech Pharmacal Inc, Fayetteville, Arkansas, USA
| | - D A Stock
- Department of Biology, Stetson University, DeLand, Florida, USA
| | - P M Rubinelli
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - M J Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, USA
| | - S C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Arbez B, Retourney C, Quilès F, Francius G, Fierobe HP, El-Kirat-Chatel S. Simultaneous enzyme grafting on bio-inspired scaffolds for antibacterial protection. MATERIALS ADVANCES 2024; 5:1171-1184. [DOI: 10.1039/d3ma00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Surface bacterial contamination represents a crucial health and industrial concern which requires new strategies to be continuously developed.
Collapse
Affiliation(s)
- Baptiste Arbez
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Chloé Retourney
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Fabienne Quilès
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Gregory Francius
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | - Henri-Pierre Fierobe
- Laboratoire de Chimie Bactérienne (LCB), CNRS, Université d'Aix-Marseille, UMR7283 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Sofiane El-Kirat-Chatel
- Université de Lorraine, CNRS, LCPME, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
7
|
Nouruzi E, Hosseini SM, Asghari B, Mahjoub R, Zare EN, Shahbazi MA, Kalhori F, Arabestani MR. Effect of poly (lactic-co-glycolic acid) polymer nanoparticles loaded with vancomycin against Staphylococcus aureus biofilm. BMC Biotechnol 2023; 23:39. [PMID: 37723466 PMCID: PMC10506343 DOI: 10.1186/s12896-023-00811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.
Collapse
Affiliation(s)
- Ellahe Nouruzi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| | - Babak Asghari
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fereshte Kalhori
- Biotechnology department, Hamadan University of Medical Sciences, Hamadan, IR, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, IR, Iran.
| |
Collapse
|
8
|
Kim H, Seo J. A Novel Strategy to Identify Endolysins with Lytic Activity against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24065772. [PMID: 36982851 PMCID: PMC10059956 DOI: 10.3390/ijms24065772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the dairy industry has become a fundamental concern. Endolysins are bacteriophage-derived peptidoglycan hydrolases that induce the rapid lysis of host bacteria. Herein, we evaluated the lytic activity of endolysin candidates against S. aureus and MRSA. To identify endolysins, we used a bioinformatical strategy with the following steps: (1) retrieval of genetic information, (2) annotation, (3) selection of MRSA, (4) selection of endolysin candidates, and (5) evaluation of protein solubility. We then characterized the endolysin candidates under various conditions. Approximately 67% of S. aureus was detected as MRSA, and 114 putative endolysins were found. These 114 putative endolysins were divided into three groups based on their combinations of conserved domains. Considering protein solubility, we selected putative endolysins 117 and 177. Putative endolysin 117 was the only successfully overexpressed endolysin, and it was renamed LyJH1892. LyJH1892 showed potent lytic activity against both methicillin-susceptible S. aureus and MRSA and showed broad lytic activity against coagulase-negative staphylococci. In conclusion, this study demonstrates a rapid strategy for the development of endolysin against MRSA. This strategy could also be used to combat other antibiotic-resistant bacteria.
Collapse
|
9
|
Shao M, Shi Z, Zhang C, Li Z, Zhai B. Preparation and performance of bacterial cellulose-based enzyme-carrying composite hydrogels as wound healing material. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221143445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.
Collapse
Affiliation(s)
- Meiling Shao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Zhan Shi
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Chi Zhang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Zhongyi Li
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Bin Zhai
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| |
Collapse
|
10
|
The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis. Commun Biol 2022; 5:1228. [DOI: 10.1038/s42003-022-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractBacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.
Collapse
|
11
|
Xie H, Liu Y, An H, Yi J, Li C, Wang X, Chai W. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol 2022; 10:1053399. [PMID: 36440438 PMCID: PMC9685530 DOI: 10.3389/fbioe.2022.1053399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2023] Open
Abstract
Prosthetic joint infection (PJI) is often considered as one of the most common but catastrophic complications after artificial joint replacement, which can lead to surgical failure, revision, amputation and even death. It has become a worldwide problem and brings great challenges to public health systems. A small amount of microbe attaches to the graft and forms a biofilm on its surface, which lead to the PJI. The current standard methods of treating PJI have limitations, but according to recent reports, bioactive materials have potential research value as a bioactive substance that can have a wide range of applications in the field of PJI. These include the addition of bioactive materials to bone cement, the use of antibacterial and anti-fouling materials for prosthetic coatings, the use of active materials such as bioactive glasses, protamine, hydrogels for prophylaxis and detection with PH sensors and fluorescent-labelled nanoparticles, and the use of antibiotic hydrogels and targeting delivery vehicles for therapeutic purposes. This review focus on prevention, detection and treatment in joint infections with bioactive materials and provide thoughts and ideas for their future applications.
Collapse
Affiliation(s)
- Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
12
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
13
|
Xin W, Gao Y, Yue B. Recent Advances in Multifunctional Hydrogels for the Treatment of Osteomyelitis. Front Bioeng Biotechnol 2022; 10:865250. [PMID: 35547176 PMCID: PMC9081433 DOI: 10.3389/fbioe.2022.865250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis (OM), a devastating disease caused by microbial infection of bones, remains a major challenge for orthopedic surgeons. Conventional approaches for prevention and treatment of OM are unsatisfactory. Various alternative strategies have been proposed, among which, hydrogel-based strategies have demonstrated potential due to their unique properties, including loadable, implantable, injectable, printable, degradable, and responsive to stimuli. Several protocols, including different hydrogel designs, selection of antimicrobial agent, co-administration of bone morphogenetic protein 2 (BMP 2), and nanoparticles, have been shown to improve the biological properties, including antimicrobial effects, osteo-induction, and controlled drug delivery. In this review, we describe the current and future directions for designing hydrogels and their applications to improve the biological response to OM in vivo.
Collapse
|
14
|
Kaspar U, Schleimer N, Idelevich EA, Molinaro S, Becker K. Exploration of Bacterial Re-Growth as In Vitro Phenomenon Affecting Methods for Analysis of the Antimicrobial Activity of Chimeric Bacteriophage Endolysins. Microorganisms 2022; 10:microorganisms10020445. [PMID: 35208898 PMCID: PMC8877451 DOI: 10.3390/microorganisms10020445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Drug alternatives to combat methicillin-resistant Staphylococcus aureus (MRSA) in human and animal healthcare are urgently needed. Recently, the recombinant bacteriophage endolysins, PRF-119 and its successor substance HY-133, have proven to be highly active against various S. aureus clonal lineages and to exhibit a very rapid bactericidal effect when standard methods for susceptibility testing are applied. Along with subsequent growth curve experiments, a re-growth phenomenon was observed in vitro necessitating its clarification for the assessment of the agent’s stability and activity as well as for methodological aspects of endolysin testing in general. Distinct in vitro parameters were comparatively examined applying also scanning electron microscopy, fluorescence assays and SDS-PAGE analysis. The shape and material of the culture vessels as well as the shaking conditions were identified as factors influencing the in vitro stability and activity of HY-133. The highest function maintenance was observed in plain centrifuge tubes. Based on this, the conditions and parameters of assays for testing the antimicrobial activities of phage endolysins were determined and adjusted. In particular, shear forces should be kept to a minimum. Our results form the basis for both future test standardization and re-growth-independent experiments as prerequisites for exact determination of the antimicrobial activities of engineered endolysins.
Collapse
Affiliation(s)
- Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (U.K.); (N.S.); (E.A.I.)
| | - Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (U.K.); (N.S.); (E.A.I.)
| | - Evgeny A. Idelevich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (U.K.); (N.S.); (E.A.I.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Sonja Molinaro
- Microcoat Biotechnologie GmbH, 82347 Bernried, Germany
- Correspondence: (S.M.); (K.B.); Tel.: +49-3834-86-5560 (K.B.)
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (U.K.); (N.S.); (E.A.I.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (S.M.); (K.B.); Tel.: +49-3834-86-5560 (K.B.)
| |
Collapse
|
15
|
Far BE, Ragheb M, Rahbar R, Mafakher L, Nojookambari NY, Achinas S, Yazdansetad S. Cloning and expression of Staphylococcus simulans lysostaphin enzyme gene in Bacillus subtilis WB600. AIMS Microbiol 2021; 7:271-283. [PMID: 34708172 PMCID: PMC8500799 DOI: 10.3934/microbiol.2021017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Lysostaphin is a glycylglycine endopeptidase, secreted by Staphylococcus simulans, capable of specifically hydrolyzing pentaglycine crosslinks present in the peptidoglycan of the Staphylococcus aureus cell wall. In this paper, we describe the cloning and expression of the lysostaphin enzyme gene in Bacillus subtilis WB600 host using pWB980 expression system. Plasmid pACK1 of S. simulans was extracted using the alkaline lysis method. Lysostaphin gene was isolated by PCR and cloned into pTZ57R/T-Vector, then transformed into Escherichia coli DH5α. The amplified gene fragment and uncloned pWB980 vector were digested using PstI and XbaІ enzymes and purified. The restricted gene fragment was ligated into the pWB980 expression vector by the standard protocols, then the recombinant plasmid was transformed into B. subtilis WB600 using electroporation method. The recombinant protein was evaluated by the SDS-PAGE method and confirmed by western immunoblot. Analysis of the target protein showed a band corresponding to 27-kDa r-lysostaphin. Protein content was estimated 91 mg/L by Bradford assay. The recombinant lysostaphin represented 90% of its maximum activity at 40 °C and displayed good thermostability by keeping about 80% of its maximum activity at 45 °C. Heat residual activity assay of recombinant lysostaphin demonstrated that the enzyme stability was up to 40 °C and showed good stability at 40 °C for 16 h incubation.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ragheb
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ladan Mafakher
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Sajjad Yazdansetad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
CRISPR-Cas, a Revolution in the Treatment and Study of ESKAPE Infections: Pre-Clinical Studies. Antibiotics (Basel) 2021; 10:antibiotics10070756. [PMID: 34206474 PMCID: PMC8300728 DOI: 10.3390/antibiotics10070756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest threats we face globally is the emergence of antimicrobial-resistant (AMR) bacteria, which runs in parallel with the lack in the development of new antimicrobials. Among these AMR bacteria pathogens belonging to the ESKAPE group can be highlighted (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) due to their profile of drug resistance and virulence. Therefore, innovative lines of treatment must be developed for these bacteria. In this review, we summarize the different strategies for the treatment and study of molecular mechanisms of AMR in the ESKAPE pathogens based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins’ technologies: loss of plasmid or cellular viability, random mutation or gene deletion as well directed mutations that lead to a gene’s loss of function.
Collapse
|
18
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
19
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
20
|
Lisboa J, Pereira C, Rifflet A, Ayala J, Terceti MS, Barca AV, Rodrigues I, Pereira PJB, Osorio CR, García-Del Portillo F, Gomperts Boneca I, do Vale A, Dos Santos NMS. A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida Cleaves the Peptidoglycan of Potentially Competing Bacteria. mSphere 2021; 6:e00736-20. [PMID: 33536321 PMCID: PMC7860986 DOI: 10.1128/msphere.00736-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.
Collapse
Affiliation(s)
- Johnny Lisboa
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM Groupe Avenir, Paris, France
- CNRS, UMR "Integrated and Molecular Microbiology," Paris, France
| | - Juan Ayala
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alba V Barca
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inês Rodrigues
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Macromolecular Structure Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco García-Del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM Groupe Avenir, Paris, France
- CNRS, UMR "Integrated and Molecular Microbiology," Paris, France
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Functional Identification of Serine Hydroxymethyltransferase as a Key Gene Involved in Lysostaphin Resistance and Virulence Potential of Staphylococcus aureus Strains. Int J Mol Sci 2020; 21:ijms21239135. [PMID: 33266291 PMCID: PMC7731198 DOI: 10.3390/ijms21239135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Gaining an insight into the mechanism underlying antimicrobial-resistance development in Staphylococcus aureus is crucial for identifying effective antimicrobials. We isolated S. aureus sequence type 72 from a patient in whom the S. aureus infection was highly resistant to various antibiotics and lysostaphin, but no known resistance mechanisms could explain the mechanism of lysostaphin resistance. Genome-sequencing followed by subtractive and functional genomics revealed that serine hydroxymethyltransferase (glyA or shmT gene) plays a key role in lysostaphin resistance. Serine hydroxymethyltransferase (SHMT) is indispensable for the one-carbon metabolism of serine/glycine interconversion and is linked to folate metabolism. Functional studies revealed the involvement of SHMT in lysostaphin resistance, as ΔshmT was susceptible to the lysostaphin, while complementation of the knockout expressing shmT restored resistance against lysostaphin. In addition, the ΔshmT showed reduced virulence under in vitro (mammalian cell lines infection) and in vivo (wax-worm infection) models. The SHMT inhibitor, serine hydroxymethyltransferase inhibitor 1 (SHIN1), protected the 50% of the wax-worm infected with wild type S. aureus. These results suggest SHMT is relevant to the extreme susceptibility to lysostaphin and the host immune system. Thus, the current study established that SHMT plays a key role in lysostaphin resistance development and in determining the virulence potential of multiple drug-resistant S. aureus.
Collapse
|
22
|
Yang X, Xie B, Peng H, Shi G, Sreenivas B, Guo J, Wang C, He Y. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J Control Release 2020; 329:454-467. [PMID: 33253805 DOI: 10.1016/j.jconrel.2020.11.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Intracellular methicillin-resistant Staphylococcus aureus (MRSA) is extremely difficult to remove by common antibiotics, leading to infection recurrence and resistance. Herein we report a novel exosome-based antibiotic delivery platform for eradicating intracellular MRSA, where mannosylated exosome (MExos) is employed as the drug carrier and preferentially taken up by macrophages, delivering lysostaphin (MExoL) and vancomycin (MExoV) to intracellular pathogens. Combination of MExoL and MExoV eradicated intracellular quiescent MRSA. Moreover, MExos rapidly accumulated in mouse liver and spleen, the target organs of intracellular MRSA, after intravenous (IV) administration. Thus, the MExos antibiotic delivery platform is a promising strategy for combating intracellular infection.
Collapse
Affiliation(s)
- Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, 400714 Chongqing, China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Haibo Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Gongming Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Banne Sreenivas
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| |
Collapse
|
23
|
Çetin K, Aslıyüce S, Idil N, Denizli A. Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:189-204. [PMID: 32962559 DOI: 10.1080/09205063.2020.1825303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibacterial micron-sized cryogels, so-called microcryogels, were prepared by cryogelation of gelatin and integration of lysozyme. Gelation yield, specific surface area, macro-porosity and swelling degree of the microcryogels were examined in order to characterize their physical properties. MTT method was utilized to measure cell viability of the gelatin microcryogels with a period of 24, 48, and 72 h and no significant decrease was observed at 72 h. Apoptotic staining assay also showed high viability at 24, 48, 72 h in parallel with the control group. The antibacterial performances of the gelatin microcryogels against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli were examined. The results showed that the incorporation of lysozyme into gelatin microcryogels exhibited the antibacterial activity against S. aureus, B. subtilis, and E. coli, that may provide great potential for various applications in the biomedical industry.
Collapse
Affiliation(s)
- Kemal Çetin
- Department of Biomedical Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Aslıyüce
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Neslihan Idil
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Differential Induction of Type I and III Interferons by Staphylococcus aureus. Infect Immun 2020; 88:IAI.00352-20. [PMID: 32690637 DOI: 10.1128/iai.00352-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.
Collapse
|
25
|
Duman-Özdamar ZE, Ünlü A, Ünal H, Woodley JM, Bi Nay B. High-yield production of active recombinant S. simulans lysostaphin expressed in E. coli in a laboratory bioreactor. Protein Expr Purif 2020; 177:105753. [PMID: 32950627 DOI: 10.1016/j.pep.2020.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus (S. aureus), which has developed multidrug resistance, leads to many healthcare-associated infections resulting in significant medical and economic losses. Therefore, the development of new efficient strategies to deal with these bacteria has been gaining importance. Lysostaphin is a peptidoglycan hydrolase that has considerable potential as a bacteriocin. However, there have been few reported optimization and scale-up studies of the lysostaphin bioproduction process. Our preliminary results have revealed that the composition of auto-induction media at 30 °C increases the produced lysostaphin around 10-fold in shake flasks. In this study, achieving higher yields for recombinant lysostaphin in E. coli at a laboratory scale has been the aim, through the use of auto-induction media. Optimized medium composition and fermentation parameters were transferred to a laboratory-scale bioreactor. The tested conditions improved protein yields up to 184 mg/L in a 3 L stirred bioreactor and the productivity was improved 2-fold in comparison to previously published reports. Furthermore, this study also showed that lysostaphin is an effective bacteriocin on both commercially available and isolated S. aureus strains. These results will contribute to future larger-scale production of lysostaphin via the proposed fermentation conditions.
Collapse
Affiliation(s)
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Hayriye Ünal
- Nanotechnology Research Center (SUNUM), Sabanci University, 34956, Tuzla, Istanbul, Turkey
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK 2800 Kgs Lyngby, Denmark
| | - Barış Bi Nay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
26
|
Ehsani G, Farahnak M, Norouzian D, Ehsani P. Immobilization of recombinant lysostaphin on nanoparticle through biotin-streptavidin conjugation technology as a geometrical progressed confrontation against Staphylococcus aureus infection. Biotechnol Appl Biochem 2020; 68:1058-1066. [PMID: 32918836 DOI: 10.1002/bab.2025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibiotic resistance and the colonization of resistant bacteria such as Staphylococcus aureus on surfaces, often in the form of biofilms, prolong hospitalization periods and increase mortality, thus is a significant concern for healthcare providers. To prevent biofilm formation, the inadequate concentration of using nanoparticles as antibacterial coating agents is one of the major obstacles. This study aimed to design a hypervalency TiO2 nanocomposite as a reserved base to carry a high amount of active antibacterial agents such as lysostaphin via a biotin-streptavidin-biotin bridge. The utilization of the streptavidin-biotin system could increase the abundance of lysostaphin. Lysostaphin was expressed in Escherichia coli and purified. Both recombinant lysostaphin and titanium oxide nanocomposite were conjugated with biotin and linked to a streptavidin bridge. The kinetics and activity of the enzyme were examined after each step utilizing N-acetylhexaglycine as a substrate. Physical characteristics of nanoparticles containing lysostaphin were determined using AFM, SEM, FTIR, and zeta potential. The results showed changes in size, charge, and morphology of the nanoparticles following the lysostaphin attachment. Also, the stability and kinetics of the active biological enzymes on nanoparticles were reexamined following 8 months of storage. Exploiting this approach, various biotinylated antibacterial agents could be prepared and rapidly immobilized on a nanoparticle as an active net against related infectious agents.
Collapse
Affiliation(s)
- Gelareh Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahnak
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
Enzybiotics LYSSTAPH-S and LYSDERM-S as Potential Therapeutic Agents for Chronic MRSA Wound Infections. Antibiotics (Basel) 2020; 9:antibiotics9080519. [PMID: 32824115 PMCID: PMC7459665 DOI: 10.3390/antibiotics9080519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections). LYSDERM-S showed a less potent antimicrobial effect that lasted only a few hours at concentrations of 15 μg/mL and higher. Our data indicate that these antimicrobial enzymes could be of substantial help in the treatment of chronic MRSA wound infections.
Collapse
|
28
|
Apostolos AJ, Pidgeon SE, Pires MM. Remodeling of Cross-bridges Controls Peptidoglycan Cross-linking Levels in Bacterial Cell Walls. ACS Chem Biol 2020; 15:1261-1267. [PMID: 32167281 DOI: 10.1021/acschembio.0c00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell walls are barriers found in almost all known bacterial cells. These structures establish a controlled interface between the external environment and vital cellular components. A primary component of cell wall is a highly cross-linked matrix called peptidoglycan (PG). PG cross-linking, carried out by transglycosylases and transpeptidases, is necessary for proper cell wall assembly. Transpeptidases, targets of β-lactam antibiotics, stitch together two neighboring PG stem peptides (acyl-donor and acyl-acceptor strands). We recently described a novel class of cellular PG probes that were processed exclusively as acyl-donor strands. Herein, we have accessed the other half of the transpeptidase reaction by developing probes that are processed exclusively as acyl-acceptor strands. The critical nature of the cross-bridge on the PG peptide was demonstrated in live bacterial cells, and surprising promiscuity in cross-bridge primary sequence was found in various bacterial species. Additionally, acyl-acceptor probes provided insight into how chemical remodeling of the PG cross-bridge (e.g., amidation) can modulate cross-linking levels, thus establishing a physiological role of PG structural variations. Together, the acyl-donor and -acceptor probes will provide a versatile platform to interrogate PG cross-linking in physiologically relevant settings.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Sean E. Pidgeon
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| |
Collapse
|
29
|
Cardoso CV, Barbosa EV, Liberal MHT, Chagas EFD. Transgenic technology: the strategy for the control and prevention of bovine staphylococcal mastitis? ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Catalysing the way towards antimicrobial effectiveness: A systematic analysis and a new online resource for antimicrobial–enzyme combinations against Pseudomonas aeruginosa and Staphylococcus aureus. Int J Antimicrob Agents 2019; 53:598-605. [DOI: 10.1016/j.ijantimicag.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022]
|
31
|
Johnson CT, Sok MCP, Martin KE, Kalelkar PP, Caplin JD, Botchwey EA, García AJ. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. SCIENCE ADVANCES 2019; 5:eaaw1228. [PMID: 31114804 PMCID: PMC6524983 DOI: 10.1126/sciadv.aaw1228] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/09/2019] [Indexed: 05/15/2023]
Abstract
Staphylococcus aureus is the most common pathogen associated with bacterial infections in orthopedic procedures. Infections often lead to implant failure and subsequent removal, motivating the development of bifunctional materials that both promote repair and prevent failure due to infection. Lysostaphin is an anti-staphylococcal enzyme resulting in bacterial lysis and biofilm reduction. Lysostaphin use is limited by the lack of effective delivery methods to provide sustained, high doses of enzyme to infection sites. We engineered a BMP-2-loaded lysostaphin-delivering hydrogel that simultaneously prevents S. aureus infection and repairs nonhealing segmental bone defects in the murine radius. Lysostaphin-delivering hydrogels eradicated S. aureus infection and resulted in mechanically competent bone. Cytokine and immune cell profiling demonstrated that lysostaphin-delivering hydrogels restored the local inflammatory environment to that of a sterile injury. These results show that BMP-2-loaded lysostaphin-delivering hydrogel therapy effectively eliminates S. aureus infection while simultaneously regenerating functional bone resulting in defect healing.
Collapse
Affiliation(s)
- Christopher T. Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mary Caitlin P. Sok
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karen E. Martin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeremy D. Caplin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Edward A. Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author.
| |
Collapse
|
32
|
Duman ZE, Ünlü A, Çakar MM, Ünal H, Binay B. Enhanced production of recombinant Staphylococcus simulans lysostaphin using medium engineering. Prep Biochem Biotechnol 2019; 49:521-528. [DOI: 10.1080/10826068.2019.1599393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zeynep Efsun Duman
- Department of Biotechnology, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Aişe Ünlü
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hayriye Ünal
- Nanotechnology Research Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
33
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
34
|
Lysostaphin Lysibody Leads to Effective Opsonization and Killing of Methicillin-Resistant Staphylococcus aureus in a Murine Model. Antimicrob Agents Chemother 2018; 62:AAC.01056-18. [PMID: 30038041 DOI: 10.1128/aac.01056-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
The cell wall of Gram-positive bacteria contains abundant surface-exposed carbohydrate structures that are highly conserved. While these properties make surface carbohydrates ideal targets for immunotherapy, carbohydrates elicit a poor immune response that results primarily in low-affinity IgM antibodies. In a previous publication, we introduced the lysibody approach to address this shortcoming. Lysibodies are engineered molecules that combine a high-affinity carbohydrate-binding domain of bacterial or bacteriophage origin and an Fc effector portion of a human IgG antibody, thus directing effective immunity to conserved bacterial surface carbohydrates. Here, we describe the first example of a lysibody containing the binding domain from a bacteriocin, lysostaphin. We also describe the creation of five lysibodies with binding domains derived from phage lysins, directed against Staphylococcus aureus The lysostaphin and LysK lysibodies showed the most promise and were further characterized. Both lysibodies bound a range of clinically important staphylococcal strains, fixed complement on the staphylococcal surface, and induced phagocytosis of S. aureus by macrophages and human neutrophils. The lysostaphin lysibody had superior in vitro activity compared to that of the LysK lysibody, as well as that of the previously characterized ClyS lysibody, and it effectively protected mice in a kidney abscess/bacteremia model. These results further demonstrate that the lysibody approach is a reproducible means of creating antibacterial antibodies that cannot be produced by conventional means. Lysibodies therefore are a promising solution for opsonic antibodies that may be used passively to both treat and prevent infection by drug-resistant pathogens.
Collapse
|
35
|
Nahar S, Mizan MFR, Ha AJW, Ha SD. Advances and Future Prospects of Enzyme-Based Biofilm Prevention Approaches in the Food Industry. Compr Rev Food Sci Food Saf 2018; 17:1484-1502. [DOI: 10.1111/1541-4337.12382] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shamsun Nahar
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | | | - Angela Jie-won Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | - Sang-Do Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|
36
|
Unprotonated Short-Chain Alkylamines Inhibit Staphylolytic Activity of Lysostaphin in a Wall Teichoic Acid-Dependent Manner. Appl Environ Microbiol 2018; 84:AEM.00693-18. [PMID: 29728390 DOI: 10.1128/aem.00693-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 01/25/2023] Open
Abstract
Lysostaphin (Lst) is a potent bacteriolytic enzyme that kills Staphylococcus aureus, a common bacterial pathogen of humans and animals. With high activity against both planktonic cells and biofilms, Lst has the potential to be used in industrial products, such as commercial cleansers, for decontamination. However, Lst is inhibited in the presence of monoethanolamine (MEA), a chemical widely used in cleaning solutions and pharmaceuticals, and the underlying mechanism of inhibition remains unknown. In this study, we examined the cell binding and killing capabilities of Lst against S. aureus ATCC 6538 in buffered salt solution with MEA at different pH values (7.5 to 10.5) and discovered that only the unprotonated form of MEA inhibited Lst binding to the cell surface, leading to low Lst activity, despite retention of its secondary structure. This reduced enzyme activity could be largely recovered via a reduction in wall teichoic acid (WTA) biosynthesis through tunicamycin treatment, indicating that the suppression of Lst activity was dependent on the presence and amount of WTA. We propose that the decreased cell binding and killing capabilities of Lst are associated with the influence of uncharged MEA on the conformation of WTA. A similar effect was confirmed with other short-chain alkylamines. This study offers new insight into the impact of short-chain alkylamines on both Lst and WTA structure and function and provides guidance for the application of Lst in harsh environments.IMPORTANCE Lysostaphin (Lst) effectively and selectively kills Staphylococcus aureus, the bacterial culprit of many hospital- and community-acquired skin and respiratory infections and food poisoning. Lst has been investigated in animal models and clinical trials, industrial formulations, and environmental settings. Here, we studied the mechanistic basis of the inhibitory effect of alkylamines, such as monoethanolamine (MEA), a widely used chemical in commercial detergents, on Lst activity, for the potential incorporation of Lst in disinfectant solutions. We have found that protonated MEA has little influence on Lst activity, while unprotonated MEA prevents Lst from binding to S. aureus cells and hence dramatically decreases the enzyme's bacteriolytic efficacy. Following partial removal of the wall teichoic acid, an important component of the bacterial cell envelope, the inhibitory effect of unprotonated MEA on Lst is reduced. This phenomenon can be extended to other short-chain alkylamines. This mechanistic report of the impact of alkylamines on Lst functionality will help guide future applications of Lst in disinfection and decontamination of health-related commercial products.
Collapse
|
37
|
Rapid Determination of Resistance to Antibiotic Inhibitors of Protein Synthesis inStaphylococcus aureusThroughIn SituEvaluation of DNase Activity. Microb Drug Resist 2018; 24:739-746. [DOI: 10.1089/mdr.2018.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci U S A 2018; 115:E4960-E4969. [PMID: 29760099 PMCID: PMC5984524 DOI: 10.1073/pnas.1801013115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Orthopedic implant infections require long-term antibiotic therapy and surgical debridement to successfully retain the implant; however, therapeutic failure can lead to implant removal. Here an injectable PEG-based hydrogel that adheres to exposed tissue and fracture surfaces is engineered to deliver the antimicrobial enzyme lysostaphin to infected, implant-fixed, mouse femoral fractures. Lysostaphin encapsulation within the hydrogel enhances enzyme stability while providing enhanced antibiofilm activity and serving as a controlled delivery platform. In a preclinical animal model of orthopedic-implant infection, we show that lysostaphin-delivering hydrogels outperform prophylactic antibiotic therapy and soluble lysostaphin, by eradicating infection while promoting bone repair. Importantly, lysostaphin-delivering hydrogels are effective against antibiotic-resistant infections. This lysostaphin delivery platform could be highly effective at treating and preventing implant infections. Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair.
Collapse
|
39
|
Kulikov S, Subakaeva E, Zelenikhin P, Tyurin Y, Ilinskaya O. Depolymerized Chitosan Enhances the Lysis of Staphylococcus aureus Cells by Lysostaphin. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Nguyen LTT, Takemura AJ, Ohniwa RL, Saito S, Morikawa K. Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus aureus. Curr Microbiol 2017; 75:499-504. [DOI: 10.1007/s00284-017-1409-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
|
41
|
Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 2017; 55:753-766. [PMID: 28956348 DOI: 10.1007/s12275-017-7274-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.
Collapse
|
42
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
43
|
Raulinaitis V, Tossavainen H, Aitio O, Seppala R, Permi P. 1H, 13C and 15N resonance assignments of the new lysostaphin family endopeptidase catalytic domain from Staphylococcus aureus. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:69-73. [PMID: 27943001 DOI: 10.1007/s12104-016-9722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Lysostaphin family endopeptidases, produced by Staphylococcus genus, are zinc-dependent enzymes that cleave pentaglycine bridges of cell wall peptidoglycan. They act as autolysins to maintain cell wall metabolism or as toxins and weapons against competing strains. Consequently, these enzymes are compelling targets for new drugs as well as are potential antimicrobial agents themselves against Staphylococcus pathogens, which depend on cell wall to retain their immunity against antibiotics. The rapid spread of methicillin and vancomycin-resistant Staphylococcus aureus strains draws demand for new therapeutic approaches. S. aureus gene sa0205 was found to be implicated in resistance to vancomycin and synthesis of the bacteria cell wall. The gene encodes for a catalytic domain of a lysostaphin-type endopeptidase. We aim to obtain the structure of the Sa0205 catalytic domain, the first solution structure of the catalytic domain of the lysostaphin family enzymes. In addition, we are to investigate the apparent binding of the second zinc ion, which has not been previously reported for the enzyme group. Herein, we present the backbone and side chain resonance assignments of Sa0205 endopeptidase catalytic domain in its one and two zinc-bound forms.
Collapse
Affiliation(s)
- Vytas Raulinaitis
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Olli Aitio
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Glykos Finland Ltd., Viikinkaari 6, 00790, Helsinki, Finland
| | - Raili Seppala
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland.
- Departments of Biological and Environmental Science and Chemistry, Nanoscience Center, University of Jyvaskyla, 40014, Jyvaskyla, Finland.
| |
Collapse
|
44
|
Determining bacteriophage endopeptidase activity using either fluorophore-quencher labeled peptides combined with liquid chromatography-mass spectrometry (LC-MS) or Förster resonance energy transfer (FRET) assays. PLoS One 2017; 12:e0173919. [PMID: 28296948 PMCID: PMC5352010 DOI: 10.1371/journal.pone.0173919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/03/2022] Open
Abstract
The necessity of identifying novel methods to combat infections caused by antibiotic resistant bacteria is increasing each year. Recent advancements in the development of peptidoglycan hydrolases (e.g. lysins) from bacterial viruses (bacteriophages) have revealed the efficiency of this class of enzymes in treating serious bacterial infections. Though promising results have been obtained regarding the lethal action of lysin on bacterial pathogens both in vitro and in vivo, an often-overlooked factor in these studies is precisely identifying their peptidoglycan cleavage site. This knowledge would be useful for following the activity of the enzyme during development, without the need for whole-organism lytic assays. However, more importantly, it would enable the selection of lysins with different cleavage activities that would act synergistically for enhanced efficacy. Here, we have developed two new methods to accurately identify the cleavage site of lysins using liquid chromatography mass spectrometry (LC-MS) on peptidoglycan-like fluorophore-quencher modified synthetic peptides, as well as determining the enzymatic action and kinetics of the enzymes on modified peptides in a Förster resonance energy transfer (FRET) assay. These methods should facilitate progress within the lysin field, accelerating the development of therapeutic lysins to combat antibiotic resistant bacterial infections.
Collapse
|
45
|
Singha P, Locklin J, Handa H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater 2017; 50:20-40. [PMID: 27916738 PMCID: PMC5316300 DOI: 10.1016/j.actbio.2016.11.070] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
More than 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 15-25% of hospitalized patients. Among other purposes, urinary catheters are primarily used for draining urine after surgeries and for urinary incontinence. During catheter-associated urinary tract infections, bacteria travel up to the bladder and cause infection. A major cause of catheter-associated urinary tract infection is attributed to the use of non-ideal materials in the fabrication of urinary catheters. Such materials allow for the colonization of microorganisms, leading to bacteriuria and infection, depending on the severity of symptoms. The ideal urinary catheter is made out of materials that are biocompatible, antimicrobial, and antifouling. Although an abundance of research has been conducted over the last forty-five years on the subject, the ideal biomaterial, especially for long-term catheterization of more than a month, has yet to be developed. The aim of this review is to highlight the recent advances (over the past 10years) in developing antimicrobial materials for urinary catheters and to outline future requirements and prospects that guide catheter materials selection and design. STATEMENT OF SIGNIFICANCE This review article intends to provide an expansive insight into the various antimicrobial agents currently being researched for urinary catheter coatings. According to CDC, approximately 75% of urinary tract infections are caused by urinary catheters and 15-25% of hospitalized patients undergo catheterization. In addition to these alarming statistics, the increasing cost and health related complications associated with catheter associated UTIs make the research for antimicrobial urinary catheter coatings even more pertinent. This review provides a comprehensive summary of the history, the latest progress in development of the coatings and a brief conjecture on what the future entails for each of the antimicrobial agents discussed.
Collapse
Affiliation(s)
- Priyadarshini Singha
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Jason Locklin
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA; Department of Chemistry, University of Georgia, Athens, GA, USA.
| | - Hitesh Handa
- School of Materials, Chemical and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
46
|
Boksha IS, Lavrova NV, Grishin AV, Demidenko AV, Lyashchuk AM, Galushkina ZM, Ovchinnikov RS, Umyarov AM, Avetisian LR, Chernukha MI, Shaginian IA, Lunin VG, Karyagina AS. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity. BIOCHEMISTRY (MOSCOW) 2017; 81:502-10. [PMID: 27297900 DOI: 10.1134/s0006297916050072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.
Collapse
Affiliation(s)
- I S Boksha
- N. F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abtahi H, Farhangnia L, Ghaznavi-Rad E. In Vitro and in Vivo Antistaphylococcal Activity Determination of the New Recombinant Lysostaphin Protein. Jundishapur J Microbiol 2016; 9:e28489. [PMID: 27217919 PMCID: PMC4870841 DOI: 10.5812/jjm.28489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/31/2015] [Accepted: 06/14/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Bacterial infection by antibiotic-resistant Staphylococcus aureus strains is a worldwide concern and the development of novel antistaphylococcal agents is acutely needed. Lysostaphin, an example of such novel agents, is a bacteriocin secreted by S. simulans to kill S. aureus through proteolysis of the Staphylococcus cell wall. Objectives: The aim of this study was to evaluate the in vitro and in vivo antistaphylococcal activity of recombinant lysostaphin. Materials and Methods: The in vitro study of the recombinant lysostaphin activity against S. aureus was determined by turbidimetric assay. For in vivo investigation, two groups of rats were inoculated with 1.4 × 109 CFU S. aureus. Five days after the nasal instillation of S. aureus, treatment in one of the groups was performed with a single dose (200 μg/dose) of recombinant lysostaphin formulated in Eucerin-based cream. Results: Recombinant lysostaphin at 100 μg/mL concentration showed a significant decrease of the optical density compared to the control samples. The in vivo study demonstrated that a single dose (200 μg/dose) of recombinant lysostaphin cream significantly reduced nasal colonization in all the treated animals compared to the untreated ones. Conclusions: These results demonstrated that the recombinant lysostaphin produced in this study was able to kill nasal S. aureus in rats. It can be recommended for human clinical trial studies.
Collapse
Affiliation(s)
- Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, IR Iran
| | - Leila Farhangnia
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology and Immunology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
- Corresponding author: Ehsanollah Ghaznavi-Rad, Department of Microbiology and Immunology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran. Tel/Fax: +98-8634173526, E-mail:
| |
Collapse
|
48
|
Roces C, Rodríguez A, Martínez B. Cell Wall-active Bacteriocins and Their Applications Beyond Antibiotic Activity. Probiotics Antimicrob Proteins 2016; 4:259-72. [PMID: 26782186 DOI: 10.1007/s12602-012-9116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microorganisms synthesize several compounds with antimicrobial activity in order to compete or defend themselves against others and ensure their survival. In this line, the cell wall is a major protective barrier whose integrity is essential for many vital bacterial processes. Probably for this reason, it represents a 'hot spot' as a target for many antibiotics and antimicrobial peptides such as bacteriocins. Bacteriocins have largely been recognized by their pore-forming ability that collapses the selective permeability of the cytoplasmic membrane. However, in the last few years, many bacteriocins have been shown to inhibit cell wall biosyntheis alone, or in a concerted action with pore formation like nisin. Examples of cell wall-active bacteriocins are found in both Gram-negative and Gram-positive bacteria and include a wide diversity of structures such as nisin-like and mersacidin-like lipid II-binding bacteriocins, two-peptide lantibiotics, and non-modified bacteriocins. In this review, we summarize the current knowledge on these antimicrobial peptides as well as the role, composition, and biosynthesis of the bacterial cell wall as their target. Moreover, even though bacteriocins have been a matter of interest as natural food antimicrobials, we propose them as suitable tools to provide new means to improve biotechnologically relevant microorganisms.
Collapse
Affiliation(s)
- Clara Roces
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300, Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300, Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- DairySafe Group, Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
49
|
Campoccia D, Testoni F, Ravaioli S, Cangini I, Maso A, Speziale P, Montanaro L, Visai L, Arciola CR. Orthopedic implant infections: Incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J Biomed Mater Res A 2015; 104:788-801. [PMID: 26378773 DOI: 10.1002/jbm.a.35564] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 11/11/2022]
Abstract
Septic failure is still the major complication of prosthetic implants. Entering host cells, bacteria hide from host immune defenses, shelter from extracellular antibiotics, and cause chronic infection. Staphylococcus aureus, the leading etiologic agent of orthopedic implant infections, is able to enter bone cells and induce osteoblast apoptosis, osteoclast recruitment, and highly destructive osteomyelitis. Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis are opportunistic pathogens causative of implant-related infections. This study investigated the ability to internalize into osteoblastic MG63 cells of 22 S. epidermidis, 9 S. lugdunensis, and 21 E. faecalis clinical isolates from orthopedic implant infections. Isolates were categorized in clusters by ribotyping. Internalization assay was carried out by means of a microtiter plate-based method. S. epidermidis, S. lugdunensis, and E. faecalis strains turned out incompetent to enter osteoblasts, exhibiting negligible internalization into MG63 cells, nearly three orders of magnitude lower than that of S. aureus. Osteoblast invasion does not appear as a pathogenetic mechanism utilized by S. epidermidis, S. lugdunensis, or E. faecalis for infecting orthopedic implants. Moreover, it can be inferred that intracellularly active antimicrobials should not be necessary against implant infections caused by the three bacterial species. Finally, implications with the uptake of biomaterial microparticles by nonphagocytic cells are enlightened. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 788-801, 2016.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Testoni
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Ilaria Cangini
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alessandra Maso
- Microbiology Analysis Section of the Musculoskeletal Tissue Bank, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomy and Disability, Nanotechnology Laboratory, Salvatore Maugeri Foundation, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Cell wall-affecting antibiotics modulate natural transformation in SigH-expressing Staphylococcus aureus. J Antibiot (Tokyo) 2015; 69:464-6. [DOI: 10.1038/ja.2015.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022]
|