• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4599705)   Today's Articles (4338)   Subscriber (49359)
For: Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008;81:243-55. [PMID: 18751695 DOI: 10.1007/s00253-008-1649-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/31/2008] [Accepted: 08/03/2008] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020;45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]  Open
2
Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 2020;11:883-903. [PMID: 32799606 PMCID: PMC8291843 DOI: 10.1080/21655979.2020.1801178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
3
Improving Xylose Fermentation in Saccharomyces cerevisiae by Expressing Nuclear-Localized Hexokinase 2. Microorganisms 2020;8:microorganisms8060856. [PMID: 32517148 PMCID: PMC7356972 DOI: 10.3390/microorganisms8060856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]  Open
4
Nijland JG, Driessen AJM. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol 2020;7:464. [PMID: 32064252 PMCID: PMC7000353 DOI: 10.3389/fbioe.2019.00464] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]  Open
5
Suzuki T, Hoshino T, Matsushika A. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains. Enzyme Microb Technol 2019;129:109359. [DOI: 10.1016/j.enzmictec.2019.109359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
6
Liu L, Zeng W, Du G, Chen J, Zhou J. Identification of NAD-Dependent Xylitol Dehydrogenase from Gluconobacter oxydans WSH-003. ACS OMEGA 2019;4:15074-15080. [PMID: 31552350 PMCID: PMC6751703 DOI: 10.1021/acsomega.9b01867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
7
Borelli G, Fiamenghi MB, dos Santos LV, Carazzolle MF, Pereira GAG, José J. Positive Selection Evidence in Xylose-Related Genes Suggests Methylglyoxal Reductase as a Target for the Improvement of Yeasts' Fermentation in Industry. Genome Biol Evol 2019;11:1923-1938. [PMID: 31070742 PMCID: PMC6637916 DOI: 10.1093/gbe/evz036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/12/2022]  Open
8
Seike T, Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE. Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019;12:139. [PMID: 31178927 PMCID: PMC6551904 DOI: 10.1186/s13068-019-1474-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
9
You ZN, Chen Q, Shi SC, Zheng MM, Pan J, Qian XL, Li CX, Xu JH. Switching Cofactor Dependence of 7β-Hydroxysteroid Dehydrogenase for Cost-Effective Production of Ursodeoxycholic Acid. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03561] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
10
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018;50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
11
Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design. Methods Mol Biol 2018;1671:15-26. [PMID: 29170950 DOI: 10.1007/978-1-4939-7295-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
12
Eriksen DT, Chao R, Zhao H. Applying Advanced DNA Assembly Methods to Generate Pathway Libraries. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]  Open
13
Liu J, Li H, Zhao G, Caiyin Q, Qiao J. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 2018;45:313-327. [PMID: 29582241 DOI: 10.1007/s10295-018-2031-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
14
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017;2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023]  Open
15
Novy V, Wang R, Westman JO, Franzén CJ, Nidetzky B. Saccharomyces cerevisiae strain comparison in glucose-xylose fermentations on defined substrates and in high-gravity SSCF: convergence in strain performance despite differences in genetic and evolutionary engineering history. BIOTECHNOLOGY FOR BIOFUELS 2017;10:205. [PMID: 28878820 PMCID: PMC5584037 DOI: 10.1186/s13068-017-0887-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
16
Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 2017;17:3861258. [DOI: 10.1093/femsyr/fox034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022]  Open
17
Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production. ACTA ACUST UNITED AC 2017;44:879-891. [DOI: 10.1007/s10295-017-1912-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
18
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 2017;16:82. [PMID: 28494761 PMCID: PMC5425999 DOI: 10.1186/s12934-017-0694-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023]  Open
19
Matsushika A, Suzuki T, Goshima T, Hoshino T. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress. J Biosci Bioeng 2017;124:164-170. [PMID: 28476241 DOI: 10.1016/j.jbiosc.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/05/2017] [Indexed: 12/21/2022]
20
Zhang GC, Turner TL, Jin YS. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. ACTA ACUST UNITED AC 2017;44:387-395. [DOI: 10.1007/s10295-016-1899-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022]
21
Cahn JKB, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synth Biol 2017;6:326-333. [PMID: 27648601 DOI: 10.1021/acssynbio.6b00188] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Guo W, Sheng J, Feng X. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017;162:265-299. [PMID: 28424826 DOI: 10.1007/10_2017_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
23
Matsushika A, Negi K, Suzuki T, Goshima T, Hoshino T. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress. PLoS One 2016;11:e0161888. [PMID: 27589271 PMCID: PMC5010203 DOI: 10.1371/journal.pone.0161888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]  Open
24
Jo SE, Seong YJ, Lee HS, Lee SM, Kim SJ, Park K, Park YC. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6 MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6. J Biotechnol 2016;227:72-78. [DOI: 10.1016/j.jbiotec.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/27/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
25
Shalley Sharma, Sonia Sharma, Surender Singh, Lata, Anju Arora. Improving Yeast Strains for Pentose Hexose Co-fermentation: Successes and Hurdles. SPRINGER PROCEEDINGS IN ENERGY 2016. [DOI: 10.1007/978-81-322-2773-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
26
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering (Basel) 2015;3:bioengineering3010003. [PMID: 28952565 PMCID: PMC5597161 DOI: 10.3390/bioengineering3010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]  Open
27
Matsushika A, Hoshino T. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2015;42:1623-31. [DOI: 10.1007/s10295-015-1695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
28
Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol 2015;6:1165. [PMID: 26539187 PMCID: PMC4612707 DOI: 10.3389/fmicb.2015.01165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022]  Open
29
Zhang B, Zhang J, Wang D, Gao X, Sun L, Hong J. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Data Brief 2015;5:179-86. [PMID: 26543879 PMCID: PMC4589838 DOI: 10.1016/j.dib.2015.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/02/2023]  Open
30
Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng 2015;31:140-52. [PMID: 26253204 DOI: 10.1016/j.ymben.2015.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
31
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015;92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
32
Khattab SMR, Kodaki T. Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+-dependent Pichia stipitis xylitol dehydrogenase. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
33
Inoue H, Hashimoto S, Matsushika A, Watanabe S, Sawayama S. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2014;41:1773-81. [PMID: 25355632 DOI: 10.1007/s10295-014-1531-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/18/2014] [Indexed: 01/04/2023]
34
Sales B, Gonçalves D, Scheid B, Stambuk B. Growth of a Saccharomyces cerevisiae strain lacking hexose transporters in different sugars after transformation with a Scheffersomyces stipitis genomic library. BMC Proc 2014. [PMCID: PMC4210845 DOI: 10.1186/1753-6561-8-s4-p122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]  Open
35
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol Lett 2014;360:51-61. [PMID: 25163569 DOI: 10.1111/1574-6968.12589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]  Open
36
Matsushika A, Morikawa H, Goshima T, Hoshino T. Effect of fermentation conditions on the flocculation of recombinant Saccharomyces cerevisiae capable of co-fermenting glucose and xylose. Appl Biochem Biotechnol 2014;174:623-31. [PMID: 25086918 DOI: 10.1007/s12010-014-1043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/01/2014] [Indexed: 11/27/2022]
37
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus. J Biosci Bioeng 2014;119:57-64. [PMID: 25041710 DOI: 10.1016/j.jbiosc.2014.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/01/2022]
38
Ethanol Production from Xylo-oligosaccharides by Xylose-FermentingSaccharomyces cerevisiaeExpressing β-Xylosidase. Biosci Biotechnol Biochem 2014;75:1140-6. [DOI: 10.1271/bbb.110043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
39
Novy V, Krahulec S, Wegleiter M, Müller G, Longus K, Klimacek M, Nidetzky B. Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014;7:49. [PMID: 24708666 PMCID: PMC4234986 DOI: 10.1186/1754-6834-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 05/11/2023]
40
Hou J, Suo F, Wang C, Li X, Shen Y, Bao X. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol 2014;14:13. [PMID: 24529074 PMCID: PMC3928090 DOI: 10.1186/1472-6750-14-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/08/2014] [Indexed: 01/01/2023]  Open
41
Matsushika A, Goshima T, Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Fact 2014;13:16. [PMID: 24467867 PMCID: PMC3917370 DOI: 10.1186/1475-2859-13-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/24/2014] [Indexed: 01/03/2023]  Open
42
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact 2013;12:114. [PMID: 24245823 PMCID: PMC3842631 DOI: 10.1186/1475-2859-12-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023]  Open
43
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013;31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
44
Goshima T, Negi K, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 2013;116:551-4. [DOI: 10.1016/j.jbiosc.2013.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
45
Zha J, Shen M, Hu M, Song H, Yuan Y. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 2013;41:27-39. [PMID: 24113893 DOI: 10.1007/s10295-013-1350-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/17/2013] [Indexed: 01/03/2023]
46
Matsushika A, Nagashima A, Goshima T, Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One 2013;8:e69005. [PMID: 23874849 PMCID: PMC3706439 DOI: 10.1371/journal.pone.0069005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]  Open
47
Comparison of the performance of eight recombinant strains of xylose-fermenting Saccharomyces cerevisiae as to bioethanol production from rice straw enzymatic hydrolyzate. Biosci Biotechnol Biochem 2013;77:1579-82. [PMID: 23832338 DOI: 10.1271/bbb.130116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
48
Bioethanol production from Lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem 2013;77:1505-10. [PMID: 23832346 DOI: 10.1271/bbb.130173] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
49
Xiong M, Woodruff A, Tang X, Tian X, Zhang J, Cao L. Comparative study on the mutated xylose reductase to increase ethanol production in xylose-utilizing Saccharomyces cerevisiae strains. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
50
Khattab SMR, Saimura M, Kodaki T. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 2013;165:153-6. [PMID: 23578809 DOI: 10.1016/j.jbiotec.2013.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA