1
|
Fenton NM, Sharpe LJ, Fitzsimmons DM, Capell-Hattam IM, Brown AJ. Comprehensive survey of disease-causing missense mutations of the cholesterol synthesis enzyme NSDHL: Low temperature and a chemical chaperone rescue low protein expression of select mutants. J Steroid Biochem Mol Biol 2025; 251:106758. [PMID: 40222685 DOI: 10.1016/j.jsbmb.2025.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cholesterol is essential to human life. Perturbations to any of the 22 cholesterol synthesis enzymes can lead to devastating developmental diseases. Each enzyme is exquisitely regulated both transcriptionally and post-translationally, playing a critical role in providing cholesterol to cells. We examined 13 missense mutations and one deletion mutation in the cholesterol synthesis enzyme NSDHL (NAD(P) Dependent Steroid Dehydrogenase-Like), known to cause the X-linked developmental disorders CHILD (congenital hemidysplasia with ichthyosiform erythroderma and limb defects) syndrome and CK syndrome. Little is known about the effect of these missense mutations on the stability and function of NSDHL. Here we show that protein expression levels were low for all mutants, but some could be rescued by a lower temperature (30°C vs. 37°C) and/or the chemical chaperone glycerol. Additionally, heat shock proteins 70 and 90 are needed for optimal NSDHL protein expression suggesting that disease mutations in NSDHL may interfere with this interaction, perhaps during translation resulting in lower protein synthesis. Our findings that these disease-causing mutations reduce NSDHL protein expression, but some respond to lower temperature and/or the chemical chaperone glycerol, can help inform future treatments for CHILD and CK syndrome.
Collapse
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Dylan M Fitzsimmons
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Vogel U, Da Costa M, Alvarez Quispe C, Stragier R, Joosten HJ, Beerens K, Desmet T. The Conversion of UDP-Glc to UDP-Man: In Silico and Biochemical Exploration To Improve the Catalytic Efficiency of CDP-Tyvelose C2-Epimerases. Chembiochem 2023; 24:e202300549. [PMID: 37728070 DOI: 10.1002/cbic.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
A promiscuous CDP-tyvelose 2-epimerase (TyvE) from Thermodesulfatator atlanticus (TaTyvE) belonging to the nucleotide sugar active short-chain dehydrogenase/reductase superfamily (NS-SDRs) was recently discovered. TaTyvE performs the slow conversion of NDP-glucose (NDP-Glc) to NDP-mannose (NDP-Man). Here, we present the sequence fingerprints that are indicative of the conversion of UDP-Glc to UDP-Man in TyvE-like enzymes based on the heptagonal box motifs. Our data-mining approach led to the identification of 11 additional TyvE-like enzymes for the conversion of UDP-Glc to UDP-Man. We characterized the top two wild-type candidates, which show a 15- and 20-fold improved catalytic efficiency, respectively, on UDP-Glc compared to TaTyvE. In addition, we present a quadruple variant of one of the identified enzymes with a 70-fold improved catalytic efficiency on UDP-Glc compared to TaTyvE. These findings could help the design of new nucleotide production pathways starting from a cheap sugar substrate like glucose or sucrose.
Collapse
Affiliation(s)
- Ulrike Vogel
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Carlos Alvarez Quispe
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Robin Stragier
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, 6511 AA, Nijmegen, The Netherlands
| | - Koen Beerens
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
3
|
Shi HL, Yuan SW, Xi XQ, Xie YL, Yue C, Zhang YJ, Yao LG, Xue C, Tang CD. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate. World J Microbiol Biotechnol 2023; 39:352. [PMID: 37864750 DOI: 10.1007/s11274-023-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 10/23/2023]
Abstract
Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.
Collapse
Affiliation(s)
- Hong-Ling Shi
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Shu-Wei Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 Jianshe East Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiao-Qi Xi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Chao Yue
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Ying-Jun Zhang
- Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China.
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| |
Collapse
|
4
|
Lappe A, Luelf UJ, Keilhammer M, Bokel A, Urlacher VB. Bacterial cytochrome P450 enzymes: Semi-rational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods Enzymol 2023; 693:133-170. [PMID: 37977729 DOI: 10.1016/bs.mie.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochromes P450 (P450s) have been recognized as attractive targets for biocatalysis and protein engineering. They are soluble cytosolic enzymes that demonstrate higher stability and activity than their membrane-associated eukaryotic counterparts. Many bacterial P450s possess broad substrate spectra and can be produced in well-known expression hosts like Escherichia coli at high levels, which enables quick and convenient mutant libraries construction. However, the majority of bacterial P450s interacts with two auxiliary redox partner proteins, which significantly increase screening efforts. We have established recombinant E. coli cells for screening of P450 variants that rely on two separate redox partners. In this chapter, a case study on construction of a selective P450 to synthesize a precursor of several chemotherapeutics, (-)-podophyllotoxin, is described. The procedure includes co-expression of P450 and redox partner genes in E. coli with subsequent whole-cell conversion of the substrate (-)-deoxypodophyllotoxin in 96-deep-well plates. By omitting the chromatographic separation while measuring mass-to-charge ratios specific for the substrate and product via MS in so-called multiple injections in a single experimental run (MISER) LC/MS, the analysis time could be drastically reduced to roughly 1 min per sample. Screening results were verified by using isolated P450 variants and purified redox partners.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Joost Luelf
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirco Keilhammer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ansgar Bokel
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Yang T, Pan L, Wu W, Pan X, Xu M, Zhang X, Rao Z. N20D/N116E Combined Mutant Downward Shifted the pH Optimum of Bacillus subtilis NADH Oxidase. BIOLOGY 2023; 12:522. [PMID: 37106723 PMCID: PMC10135872 DOI: 10.3390/biology12040522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Cofactor regeneration is indispensable to avoid the addition of large quantities of cofactor NADH or NAD+ in oxidation-reduction reactions. Water-forming NADH oxidase (Nox) has attracted substantive attention as it can oxidize cytosolic NADH to NAD+ without concomitant accumulation of by-products. However, its applications have some limitations in some oxidation-reduction processes when its optimum pH is different from its coupled enzymes. In this study, to modify the optimum pH of BsNox, fifteen relevant candidates of site-directed mutations were selected based on surface charge rational design. As predicted, the substitution of this asparagine residue with an aspartic acid residue (N22D) or with a glutamic acid residue (N116E) shifts its pH optimum from 9.0 to 7.0. Subsequently, N20D/N116E combined mutant could not only downshift the pH optimum of BsNox but also significantly increase its specific activity, which was about 2.9-fold at pH 7.0, 2.2-fold at pH 8.0 and 1.2-fold at pH 9.0 that of the wild-type. The double mutant N20D/N116E displays a higher activity within a wide range of pH from 6 to 9, which is wider than the wide type. The usability of the BsNox and its variations for NAD+ regeneration in a neutral environment was demonstrated by coupling with a glutamate dehydrogenase for α-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) at pH 7.0. Employing the variation N20D/N116E as an NAD+ regeneration coenzyme could shorten the process duration; 90% of L-Glu were transformed into α-KG within 40 min vs. 70 min with the wild-type BsNox for NAD+ regeneration. The results obtained in this work suggest the promising properties of the BsNox variation N20D/N116E are competent in NAD+ regeneration applications under a neutral environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Qian L, Scott NA, Capell-Hattam IM, Draper EA, Fenton NM, Luu W, Sharpe LJ, Brown AJ. Cholesterol synthesis enzyme SC4MOL is fine-tuned by sterols and targeted for degradation by the E3 ligase MARCHF6. J Lipid Res 2023; 64:100362. [PMID: 36958722 PMCID: PMC10176258 DOI: 10.1016/j.jlr.2023.100362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and post-translational level. Whilst some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the post-translational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P) dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7) is largely uncharacterized. Using cultured mammalian cell-lines (human-derived and Chinese Hamster Ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate, and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, whilst sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial post-translational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.
Collapse
Affiliation(s)
- Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eliza A Draper
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
7
|
Tomoiagă RB, Tork SD, Filip A, Nagy LC, Bencze LC. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity. Appl Microbiol Biotechnol 2023; 107:1243-1256. [PMID: 36662259 DOI: 10.1007/s00253-023-12374-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.
Collapse
Affiliation(s)
- Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Alina Filip
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Tang CD, Zhang X, Shi HL, Liu XX, Wang HY, Lu YF, Zhang SP, Kan YC, Yao LG. Improving catalytic activity of Lactobacillus harbinensis -mandelate dehydrogenase toward -o-chloromandelic acid by laboratory evolution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
A colorimetric assay for the screening and kinetic analysis of nucleotide sugar 4,6-dehydratases. Anal Biochem 2022; 655:114870. [PMID: 36027972 DOI: 10.1016/j.ab.2022.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Nucleotide sugar 4,6-dehydratases belong to the Short-chain Dehydrogenase/Reductase (SDR) superfamily and catalyze the conversion of an NDP-hexose to an NDP-4-keto-6-deoxy hexose, a key step in the biosynthesis of a plethora of deoxy and amino sugars. Here, we present a colorimetric assay for the detection of their reaction products (NDP-4-keto-6-deoxy hexoses) using concentrated sulfuric acid and an ethanolic resorcinol solution. Under these conditions, the keto-function of the dehydratase product reacts specifically with resorcinol to form an orange-red or pink complex for NDP-glucose/GDP-mannose and UDP-N-acetylglucosamine, respectively, with an absorption maximum at 510 nm. The presented assay allows reliable product detection at low concentrations and can be applied in microtiter plates. It thus allows the determination of kinetic enzyme parameters like the optimal temperature, pH, Vmax, KM and kcat, as well as the miniaturization for screening purposes with crude cell extracts. As such, this detection assay opens new possibilities for the characterization and screening of these dehydratases in 96-well plates for different research goals.
Collapse
|
10
|
Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochem J 2022; 479:1237-1256. [PMID: 35594055 PMCID: PMC9284383 DOI: 10.1042/bcj20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3. Priming phosphorylation of murine TRARG1 at serine 84 allows for GSK3-directed phosphorylation at serines 72, 76 and 80. A similar pattern of phosphorylation was observed in human TRARG1, suggesting that our findings are translatable to human TRARG1. Pharmacological inhibition of GSK3 increased cell surface GLUT4 in cells stimulated with a submaximal insulin dose, and this was impaired following Trarg1 knockdown, suggesting that TRARG1 acts as a GSK3-mediated regulator in GLUT4 trafficking. These data place TRARG1 within the insulin signaling network and provide insights into how GSK3 regulates GLUT4 trafficking in adipocytes.
Collapse
|
11
|
Song H, Wang Y, Dong W, Chen Q, Sun H, Peng H, Li R, Chang Y, Luo H. Effect of SpyTag/SpyCatcher cyclization on stability and refolding of green fluorescent protein. Biotechnol Lett 2022; 44:613-621. [PMID: 35359178 DOI: 10.1007/s10529-022-03246-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
To study the effect of SpyTag/SpyCatcher cyclization on stability and refolding of protein, we constructed a cyclized green fluorescent protein (SRGFP) and its derivative to act as a linear structure control (L-SRGFP). SRGFP and L-SRGFP showed similar fluorescence characteristics to the wild-type GFP, while compared with GFP and L-SRGFP, the thermal stability and denaturation resistance of SRGFP were improved. The refolding efficiencies of these three denatured proteins were investigated under different pH, temperature and initial protein concentration conditions, and it was found that SRGFP was superior to GFP and L-SRGFP in terms of refolding yield and refolding speed. In the pH range of 8.0-8.5, SRGFP could basically recover all fluorescence, while GFP and L-SRGFP recovered only about 87.52% and 88.58%. When refolded at a high temperature (37 °C), SRGFP still recovered 85.27% of the fluorescence, whereas GFP and L-SRGFP recovered only around 69.43% and 68.45%. At a high initial protein concentration (5 mg/mL), the refolding yield of SRGFP was about 15% higher than that of both GFP and L-SRGFP. These results suggest that the introduction of SpyRing structure (head-to-tail cyclization via SpyTag and SpyCatcher) improved the protein's stability and facilitated the refolding of denatured protein.
Collapse
Affiliation(s)
- Haiyan Song
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yue Wang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wenge Dong
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hui Peng
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ren Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
12
|
Engineering the regiocomplementarity of an epoxide hydrolase from Rhodotorula paludigena by means of computer-aided design for the scale-up enantioconvergent hydrolysis of racemic m-nitrostyrene oxide. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kearney AL, Norris DM, Ghomlaghi M, Kin Lok Wong M, Humphrey SJ, Carroll L, Yang G, Cooke KC, Yang P, Geddes TA, Shin S, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. eLife 2021; 10:e66942. [PMID: 34253290 PMCID: PMC8277355 DOI: 10.7554/elife.66942] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/30/2021] [Indexed: 01/16/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold.
Collapse
Affiliation(s)
- Alison L Kearney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Dougall M Norris
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Martin Kin Lok Wong
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Luke Carroll
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Thomas A Geddes
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Sungyoung Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- School of Medical Sciences, University of SydneySydneyAustralia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| |
Collapse
|
14
|
Wen Z, Hu D, Hu BC, Zhang D, Huang JF, Wu MC. Structure-guided improvement in the enantioselectivity of an Aspergillus usamii epoxide hydrolase for the gram-scale kinetic resolution of ortho-trifluoromethyl styrene oxide. Enzyme Microb Technol 2021; 146:109778. [PMID: 33812566 DOI: 10.1016/j.enzmictec.2021.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Microtuning the substrate-binding pocket (SBP) of EHs has emerged as an effective approach to manipulate their enantio- or regio-selectivities and activities towards target substrates. Here, the enantioselectivity (enantiomeric ratio, E) of AuEH2 towards a racemic (rac-) ortho-trifluoromethyl styrene oxide (o-TFMSO) was improved via microtuning its SBP. Based on the analysis on the crystal structure of AuEH2, its specific residues I192, Y216, R322 and L344 lining the SBP in close to the catalytic triad were identified for site-saturation mutagenesis. After screening, five single-site mutants were selected with E values elevated from 8 to 12-25 towards rac-o-TFMSO. To further improve E, four double-site mutants were constructed by combinatorial mutagenesis of AuEH2R322V separately with AuEH2I192V, AuEH2Y216F, AuEH2L344A and AuEH2L344C. Among all the mutants, AuEH2R322V/L344C possessed the largest E of 83 with activity of 67 U/g wet cell. The kinetic resolution of 200 mM rac-o-TFMSO was conducted at 0 °C for 5.5 h using 80 mg/mL wet cells of E. coli/Aueh2R322V/L344C, a transformant expressing AuEH2R322V/L344C, retaining (S)-o-TFMSO with 98.4 % ees and 49.3 % yields. Furthermore, the molecular docking simulation analysis indicated that AuEH2R322V/L344C more enantiopreferentially attacks the terminal carbon (Cβ) in the oxirane ring of (R)-o-TFMSO than AuEH2.
Collapse
Affiliation(s)
- Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, PR China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jian-Feng Huang
- The Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
15
|
Tian L, Zhou J, Lv Q, Liu F, Yang T, Zhang X, Xu M, Rao Z. Rational engineering of the Plasmodium falciparuml-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. Int J Biol Macromol 2021; 179:71-79. [PMID: 33631263 DOI: 10.1016/j.ijbiomac.2021.02.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/29/2022]
Abstract
l-lactate dehydrogenases (LDHs) has been widely studied for their ability to reduce 2-keto acids for the production of 2-hydroxy acids, whereby 2-hydroxybutyric acids (2-HBA) is among the most important fundamental building blocks for synthesizing pharmaceuticals and biodegradable materials. However, LDHs usually show low activity towards 2-keto acids with longer side chain such as 2-oxobutyric acid (2-OBA). Here rational engineering of the Plasmodium falciparum LDH loop with residue involved in the catalytic proton transfer was initially studied. By combining homology alignment and structure-based design approach, we found that changing the charge characteristics or hydrogen bond network interactions of this loop could improve enzymatic catalytic activities and stabilities towards 2-OBA. Compared with wild type, variant N197Dldh showed 1.15 times higher activity and 2.73 times higher Kcat/Km. The half-life of variant N197Dldh at 40 °C increased to 77.9 h compared with 50.4 h of wild type. Furthermore, asymmetric synthesis of (S)-2-HBA with coenzyme regeneration revealed 95.8 g/L production titer within 12 h for variant N197Dldh, 2.05 times higher than using wild type. Our study indicated the importance of loop with residues involved in the catalytic proton transfer process, and the engineered LDH would be more suitable for (S)-2-HBA production.
Collapse
Affiliation(s)
- Lingzhi Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qinglan Lv
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
16
|
Tian J, Jia R, Wenge D, Sun H, Wang Y, Chang Y, Luo H. One-step purification and immobilization of recombinant proteins using SpyTag/SpyCatcher chemistry. Biotechnol Lett 2021; 43:1075-1087. [PMID: 33591462 DOI: 10.1007/s10529-021-03098-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
Based on the specific and spontaneous formation of isopeptide bonds by SpyCatcher/SpyTag, we have developed a one-step method for purification and immobilization of recombinant proteins. The procedure is to immobilize SpyCatcher on glyoxyl agarose gels, and then the SpyCatcher immobilisate can be used to immobilize the SpyTag-fused protein in the crude extract selectively. A mutant of SpyCatcher (mSC), in which a peptide (LysGlyLysGlyLysGly) was added to the C-terminus of SpyCatcher and three lysine residues around the SpyTag/SpyCatcher binding domain were replaced with arginine, was designed to improve the attachment of SpyCatcher to the support. Compared with wild-type SpyCatcher, mSC can be immobilized on the glyoxyl-agarose support more efficiently, which enables the obtained mSC derivative a high binding capacity of the SpyTag-fused protein. The results showed that the target proteins in the crude enzyme extract were purified and immobilized in one step, and the thermal stability of the immobilized target proteins was also remarkably improved.
Collapse
Affiliation(s)
- Junwei Tian
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruiqi Jia
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dong Wenge
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Wang
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
17
|
Bokel A, Hutter MC, Urlacher VB. Molecular evolution of a cytochrome P450 for the synthesis of potential antidepressant (2R,6R)-hydroxynorketamine. Chem Commun (Camb) 2021; 57:520-523. [PMID: 33331834 DOI: 10.1039/d0cc06729f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saturation mutagenesis at seven first-sphere residues of the cytochrome P450 monooxygenase 154E1 (CYP154E1) from Thermobifida fusca YX was applied to construct a variant with only three substitutions that enabled the effective two-step synthesis of the potential antidepressant (2R,6R)-hydroxynorketamine. A recombinant E. coli whole-cell system was essential for GC/MS based medium-throughput screening and at the same time facilitated the oxidation of the substrate (R)-ketamine at a higher scale for product isolation and subsequent NMR analysis.
Collapse
Affiliation(s)
- Ansgar Bokel
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany.
| | | | | |
Collapse
|
18
|
Aschenbrenner JC, Ebrecht AC, Tolmie C, Smit MS, Opperman DJ. Structure of the fungal hydroxylase, CYP505A30, and rational transfer of mutation data from CYP102A1 to alter regioselectivity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01348c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective oxyfunctionalisation of n-alkanes and production of non-vicinal diols by evolved CYP505A30 through rational transfer of knowledge between protein scaffolds.
Collapse
Affiliation(s)
- Jasmin C. Aschenbrenner
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, South Africa
| | - Ana C. Ebrecht
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Carmien Tolmie
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Martha S. Smit
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change, University of Cape Town, South Africa
| | - Diederik J. Opperman
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
19
|
Awad G, Garnier A. Promising optimization of bacterial cytochrome P450BM3 enzyme production by engineered Escherichia coli BL21. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
One-Pot Biocatalytic Preparation of Enantiopure Unusual α-Amino Acids from α-Hydroxy Acids via a Hydrogen-Borrowing Dual-Enzyme Cascade. Catalysts 2020. [DOI: 10.3390/catal10121470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unusual α-amino acids (UAAs) are important fundamental building blocks and play a key role in medicinal chemistry. Here, we constructed a hydrogen-borrowing dual-enzyme cascade for efficient synthesis of UAAs from α-hydroxy acids (α-HAs). D-mandelate dehydrogenase from Lactobacillus brevis (LbMDH) was screened for the catalysis of α-HAs to α-keto acids but with low activity towards aliphatic α-HAs. Therefore, we rational engineered LbMDH to improve its activity towards aliphatic α-HAs. The substitution of residue Leu243 located in the substrate entrance channel with nonpolar amino acids like Met, Trp, and Ile significantly influenced the enzyme activity towards different α-HAs. Compared with wild type (WT), variant L243W showed 103 U/mg activity towards D-α-hydroxybutyric acid, 1.7 times of the WT’s 60.2 U/mg, while its activity towards D-mandelic acid decreased. Variant L243M showed 2.3 times activity towards D-mandelic acid compared to WT, and its half-life at 40 °C increased to 150.2 h comparing with 98.5 h of WT. By combining LbMDH with L-leucine dehydrogenase from Bacillus cereus, the synthesis of structurally diverse range of UAAs from α-HAs was constructed. We achieved 90.7% conversion for L-phenylglycine production and 66.7% conversion for L-α-aminobutyric acid production. This redox self-sufficient cascade provided high catalytic efficiency and generated pure products.
Collapse
|
21
|
Surface charge-based rational design of aspartase modifies the optimal pH for efficient β-aminobutyric acid production. Int J Biol Macromol 2020; 164:4165-4172. [DOI: 10.1016/j.ijbiomac.2020.08.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
|
22
|
Gevaert O, Van Overtveldt S, Da Costa M, Beerens K, Desmet T. GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. Int J Biol Macromol 2020; 165:1862-1868. [PMID: 33075338 DOI: 10.1016/j.ijbiomac.2020.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.
Collapse
Affiliation(s)
- Ophelia Gevaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
23
|
Van Overtveldt S, Da Costa M, Gevaert O, Joosten HJ, Beerens K, Desmet T. Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnol J 2020; 15:e2000132. [PMID: 32761842 DOI: 10.1002/biot.202000132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Indexed: 11/09/2022]
Abstract
In recent years, carbohydrate epimerases have attracted increasing attention as promising biocatalysts for the production of specialty sugars and derivatives. The vast majority of these enzymes are active on nucleotide-activated sugars, rather than on their free counterparts. Although such epimerases are known to have a clear preference for a particular nucleotide (UDP, GDP, CDP, or ADP), very little is known about the determinants of the respective specificities. In this work, sequence motifs are identified that correlate with the different nucleotide specificities in one of the main epimerase superfamilies, carbohydrate epimerase 1 (CEP1). To confirm their relevance, GDP- and CDP-specific residues are introduced into the UDP-glucose 4-epimerase from Thermus thermophilus, resulting in a 3-fold and 13-fold reduction in KM for GDP-Glc and CDP-Glc, respectively. Moreover, several variants are severely crippled in UDP-Glc activity, which further underlines the crucial role of the identified positions. Hence, the analysis should prove to be valuable for the further exploration and application of epimerases involved in carbohydrate synthesis.
Collapse
Affiliation(s)
- Stevie Van Overtveldt
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, Nijmegen, 6511 AA, The Netherlands
| | - Koen Beerens
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| |
Collapse
|
24
|
A Haloalkane Dehalogenase from Saccharomonospora viridis Strain DSM 43017, a Compost Bacterium with Unusual Catalytic Residues, Unique ( S)-Enantiopreference, and High Thermostability. Appl Environ Microbiol 2020; 86:AEM.02820-19. [PMID: 32561584 DOI: 10.1128/aem.02820-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/08/2020] [Indexed: 11/20/2022] Open
Abstract
Haloalkane dehalogenases can cleave a carbon-halogen bond in a broad range of halogenated aliphatic compounds. However, a highly conserved catalytic pentad composed of a nucleophile, a catalytic base, a catalytic acid, and two halide-stabilizing residues is required for their catalytic activity. Only a few family members, e.g., DsaA, DmxA, or DmrB, remain catalytically active while employing a single halide-stabilizing residue. Here, we describe a novel haloalkane dehalogenase, DsvA, from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017, possessing one canonical halide-stabilizing tryptophan (W125). At the position of the second halide-stabilizing residue, DsvA contains the phenylalanine F165, which cannot stabilize the halogen anion released during the enzymatic reaction by a hydrogen bond. Based on the sequence and structural alignments, we identified a putative second halide-stabilizing tryptophan (W162) located on the same α-helix as F165, but on the opposite side of the active site. The potential involvement of this residue in DsvA catalysis was investigated by the construction and biochemical characterization of the three variants, DsvA01 (F165W), DsvA02 (W162F), and DsvA03 (W162F and F165W). Interestingly, DsvA exhibits a preference for the (S)- over the (R)-enantiomers of β-bromoalkanes, which has not been reported before for any characterized haloalkane dehalogenase. Moreover, DsvA shows remarkable operational stability at elevated temperatures. The present study illustrates that protein sequences possessing an unconventional composition of catalytic residues represent a valuable source of novel biocatalysts.IMPORTANCE The present study describes a novel haloalkane dehalogenase, DsvA, originating from a mildly thermophilic bacterium, Saccharomonospora viridis strain DSM 43017. We report its high thermostability, remarkable operational stability at high temperatures, and an (S)-enantiopreference, which makes this enzyme an attractive biocatalyst for practical applications. Sequence analysis revealed that DsvA possesses an unusual composition of halide-stabilizing tryptophan residues in its active site. We constructed and biochemically characterized two single point mutants and one double point mutant and identified the noncanonical halide-stabilizing residue. Our study underlines the importance of searching for noncanonical catalytic residues in protein sequences.
Collapse
|
25
|
Ubiparip Z, Moreno DS, Beerens K, Desmet T. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose. Appl Microbiol Biotechnol 2020; 104:8327-8337. [PMID: 32803296 PMCID: PMC7471185 DOI: 10.1007/s00253-020-10820-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Cellodextrins are non-digestible oligosaccharides that have attracted interest from the food industry as potential prebiotics. They are typically produced through the partial hydrolysis of cellulose, resulting in a complex mixture of oligosaccharides with a varying degree of polymerisation (DP). Here, we explore the defined synthesis of cellotriose as product since this oligosaccharide is believed to be the most potent prebiotic in the mixture. To that end, the cellobiose phosphorylase (CBP) from Cellulomonas uda and the cellodextrin phosphorylase (CDP) from Clostridium cellulosi were evaluated as biocatalysts, starting from cellobiose and α-d-glucose 1-phosphate as acceptor and donor substrate, respectively. The CDP enzyme was shown to rapidly elongate the chains towards higher DPs, even after extensive mutagenesis. In contrast, an optimised variant of CBP was found to convert cellobiose to cellotriose with a molar yield of 73%. The share of cellotriose within the final soluble cellodextrin mixture (DP2-5) was 82%, resulting in a cellotriose product with the highest purity reported to date. Interestingly, the reaction could even be initiated from glucose as acceptor substrate, which should further decrease the production costs. Key points • Cellobiose phosphorylase is engineered for the production of cellotriose. • Cellotriose is synthesised with the highest purity and yield to date. • Both cellobiose and glucose can be used as acceptor for cellotriose production.
Collapse
Affiliation(s)
- Zorica Ubiparip
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - David Sáez Moreno
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
26
|
Tomoiagă RB, Tork SD, Horváth I, Filip A, Nagy LC, Bencze LC. Saturation Mutagenesis for Phenylalanine Ammonia Lyases of Enhanced Catalytic Properties. Biomolecules 2020; 10:biom10060838. [PMID: 32486192 PMCID: PMC7355458 DOI: 10.3390/biom10060838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 01/26/2023] Open
Abstract
Phenylalanine ammonia-lyases (PALs) are attractive biocatalysts for the stereoselective synthesis of non-natural phenylalanines. The rational design of PALs with extended substrate scope, highlighted the substrate specificity-modulator role of residue I460 of Petroselinum crispum PAL. Herein, saturation mutagenesis at key residue I460 was performed in order to identify PcPAL variants of enhanced activity or to validate the superior catalytic properties of the rationally explored I460V PcPAL compared with the other possible mutant variants. After optimizations, the saturation mutagenesis employing the NNK-degeneracy generated a high-quality transformant library. For high-throughput enzyme-activity screens of the mutant library, a PAL-activity assay was developed, allowing the identification of hits showing activity in the reaction of non-natural substrate, p-MeO-phenylalanine. Among the hits, besides the known I460V PcPAL, several mutants were identified, and their increased catalytic efficiency was confirmed by biotransformations using whole-cells or purified PAL-biocatalysts. Variants I460T and I460S were superior to I460V-PcPAL in terms of catalytic efficiency within the reaction of p-MeO-Phe. Moreover, I460T PcPAL maintained the high specificity constant of the wild-type enzyme for the natural substrate, l-Phe. Molecular docking supported the favorable substrate orientation of p-MeO-cinnamic acid within the active site of I460T variant, similarly as shown earlier for I460V PcPAL (PDB ID: 6RGS).
Collapse
|
27
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
28
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
29
|
Capell-Hattam IM, Sharpe LJ, Qian L, Hart-Smith G, Prabhu AV, Brown AJ. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J Biol Chem 2020; 295:2850-2865. [PMID: 31911440 PMCID: PMC7049974 DOI: 10.1074/jbc.ra119.011323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.
Collapse
Affiliation(s)
- Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia; Department of Molecular Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
30
|
Hu B, Hu D, Zhang D, Wen Z, Zang J, Wu M. Manipulating the regioselectivity of a Solanum lycopersicum epoxide hydrolase for the enantioconvergent synthesis of enantiopure alkane- and alkene-1,2-diols. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00990c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work engineered a superior double-site mutant SlEH1W106T/F189L used for the enantioconvergent biosynthesis of (R)-1b–6b with high eep values.
Collapse
Affiliation(s)
- Bochun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Die Hu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Jia Zang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University
- Wuxi 214002
- China
| | - Minchen Wu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
31
|
Rousseau O, Ebert MCCJC, Quaglia D, Fendri A, Parisien AH, Besna JN, Iyathurai S, Pelletier JN. Indigo Formation and Rapid NADPH Consumption Provide Robust Prediction of Raspberry Ketone Synthesis by Engineered Cytochrome P450 BM3. ChemCatChem 2019. [DOI: 10.1002/cctc.201901974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Rousseau
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Maximilian C. C. J. C. Ebert
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Daniela Quaglia
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Ali Fendri
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Adem H. Parisien
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Jonathan N. Besna
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Saathanan Iyathurai
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Joelle N. Pelletier
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| |
Collapse
|
32
|
Chrast L, Tratsiak K, Planas-Iglesias J, Daniel L, Prudnikova T, Brezovsky J, Bednar D, Kuta Smatanova I, Chaloupkova R, Damborsky J. Deciphering the Structural Basis of High Thermostability of Dehalogenase from Psychrophilic Bacterium Marinobacter sp. ELB17. Microorganisms 2019; 7:E498. [PMID: 31661858 PMCID: PMC6920932 DOI: 10.3390/microorganisms7110498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Haloalkane dehalogenases are enzymes with a broad application potential in biocatalysis, bioremediation, biosensing and cell imaging. The new haloalkane dehalogenase DmxA originating from the psychrophilic bacterium Marinobacter sp. ELB17 surprisingly possesses the highest thermal stability (apparent melting temperature Tm,app = 65.9 °C) of all biochemically characterized wild type haloalkane dehalogenases belonging to subfamily II. The enzyme was successfully expressed and its crystal structure was solved at 1.45 Å resolution. DmxA structure contains several features distinct from known members of haloalkane dehalogenase family: (i) a unique composition of catalytic residues; (ii) a dimeric state mediated by a disulfide bridge; and (iii) narrow tunnels connecting the enzyme active site with the surrounding solvent. The importance of narrow tunnels in such paradoxically high stability of DmxA enzyme was confirmed by computational protein design and mutagenesis experiments.
Collapse
Affiliation(s)
- Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Katsiaryna Tratsiak
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Lukas Daniel
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| | - Tatyana Prudnikova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Ivana Kuta Smatanova
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia Ceske Budejovice and Institute of Microbiology Academy of Sciences of the Czech Republic, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- Enantis Ltd., Biotechnology Incubator INBIT, Kamenice 771/34, 625 00 Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
33
|
Li C, Kan TT, Hu D, Wang TT, Su YJ, Zhang C, Cheng JQ, Wu MC. Improving the activity and enantioselectivity of PvEH1, a Phaseolus vulgaris epoxide hydrolase, for o-methylphenyl glycidyl ether by multiple site-directed mutagenesis on the basis of rational design. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Artificial cysteine-lipases with high activity and altered catalytic mechanism created by laboratory evolution. Nat Commun 2019; 10:3198. [PMID: 31324776 PMCID: PMC6642262 DOI: 10.1038/s41467-019-11155-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Engineering artificial enzymes with high activity and catalytic mechanism different from naturally occurring enzymes is a challenge in protein design. For example, many attempts have been made to obtain active hydrolases by introducing a Ser → Cys exchange at the respective catalytic triads, but this generally induced a breakdown of activity. We now report that this long-standing dogma no longer pertains, provided additional mutations are introduced by directed evolution. By employing Candida antarctica lipase B (CALB) as the model enzyme with the Ser-His-Asp catalytic triad, a highly active cysteine-lipase having a Cys-His-Asp catalytic triad and additional mutations W104V/A281Y/A282Y/V149G can be evolved, showing a 40-fold higher catalytic efficiency than wild-type CALB in the hydrolysis of 4-nitrophenyl benzoate, and tolerating bulky substrates. Crystal structures, kinetics, MD simulations and QM/MM calculations reveal dynamic features and explain all results, including the preference of a two-step mechanism involving the zwitterionic pair Cys105−/His224+ rather than a concerted process. Candida antarctica lipase B (CALB) is a serine lipase. Here, the authors use directed evolution to exchange serine with cysteine in the catalytic triad of the enzyme, thereby obtaining a highly active CALB variant that — unlike the wild type — accommodates bulky substrates.
Collapse
|
35
|
An Efficient Approach for Two Distal Point Site-Directed Mutagenesis from Randomly Ligated PCR Products. Appl Biochem Biotechnol 2019; 189:1318-1326. [PMID: 31264104 DOI: 10.1007/s12010-019-03059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Site-directed mutagenesis is one of the most important tools in molecular biology. The majority of the mutagenesis methods have been developed to mutate one region of target DNA in each cycle of mutagenesis, while in some cases there is a need to mutate several distal points. We used a new method to simultaneously mutate two distal points in the target DNA. Different regions of the target DNA were amplified in three separate PCR reactions. The PCR products were back-to-back and together they made the complete length of the template DNA. Mutations were introduced to PCR products by middle mutagenic primers. PCR products were mixed and ligated with random blunt ligation, and then the desired mutated DNA fragments were selected in two steps by flanking restriction enzyme digestion and size selection. Selected fragments were amplified in another PCR reaction using flanking primers and finally cloned into the plasmid vector. This mutagenesis process is simple, there is no need to use modified primers and long or difficult PCR reactions.
Collapse
|
36
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
37
|
Tan C, Zhang X, Zhu Z, Xu M, Yang T, Osire T, Yang S, Rao Z. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440. Microb Cell Fact 2019; 18:12. [PMID: 30678678 PMCID: PMC6345017 DOI: 10.1186/s12934-019-1065-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background Styrene monooxygenase (SMO) catalyzes the first step of aromatic alkene degradation yielding the corresponding epoxides. Because of its broad spectrum of substrates, the enzyme harbors a great potential for an application in medicine and chemical industries. Results In this study, we achieved higher enzymatic activity and better stability towards styrene by enlarging the ligand entrance tunnel and improving the hydrophobicity through error-prone PCR and site-saturation mutagenesis. It was found that Asp305 (D305) hindered the entrance of the FAD cofactor according to the model analysis. Therefore, substitution with amino acids possessing shorter side chains, like glycine, opened the entrance tunnel and resulted in up to 2.7 times higher activity compared to the wild-type enzyme. The half-lives of thermal inactivation for the variant D305G at 60 °C was 28.9 h compared to only 3.2 h of the wild type SMO. Moreover, overexpression of SMO in Pseudomonas putida KT2440 with NADH regeneration was carried out in order to improve biotransformation efficiency for epoxide production. A hexadecane/buffer (v/v) biphasic system was applied in order to minimize the inactivation effect of high substrate concentrations on the SMO enzyme. Finally, SMO activities of 190 U/g CDW were measured and a total amount of 20.5 mM (S)-styrene oxide were obtained after 8 h. Conclusions This study offers an alternative strategy for improved SMO expression and provides an efficient biocatalytic system for epoxide production via engineering the entrance tunnel of the enzyme’s active site. Electronic supplementary material The online version of this article (10.1186/s12934-019-1065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunlin Tan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhijing Zhu
- The School of Digital Media, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
38
|
Hu BC, Li C, Wang R, Zong XC, Li JP, Li JF, Wu MC. Improvement in the activity and enantioconvergency of PvEH3, an epoxide hydrolase from Phaseolus vulgaris, for p-chlorostyrene oxide by site-saturation mutagenesis. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Acevedo‐Rocha CG, Sun Z, Reetz MT. Clarifying the Difference between Iterative Saturation Mutagenesis as a Rational Guide in Directed Evolution and OmniChange as a Gene Mutagenesis Technique. Chembiochem 2018; 19:2542-2544. [PMID: 30408315 DOI: 10.1002/cbic.201800372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Zhoutong Sun
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Department of ChemistryPhilipps University 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
| |
Collapse
|
40
|
Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst. Molecules 2018; 23:molecules23102519. [PMID: 30275414 PMCID: PMC6222537 DOI: 10.3390/molecules23102519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022] Open
Abstract
Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from d-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed. First, a mutant library of RmCE was created to try and increase the activity on monosaccharide substrates. Next, two residues from RmCE were introduced in the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) (S99M/Q371F), increasing the kcat twofold.
Collapse
|
41
|
She W, Ni J, Shui K, Wang F, He R, Xue J, Reetz MT, Li A, Ma L. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System. ACS Synth Biol 2018; 7:2236-2244. [PMID: 30075075 DOI: 10.1021/acssynbio.8b00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quality and efficiency of any PCR-based mutagenesis technique may not be optimal due to, among other things, amino acid bias, which means that the development of efficient PCR-free methods is desirable. Here, we present a highly efficient in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants in a PCR-free manner. First, it involves plasmid digestion by utilizing a complex of Cas9 with specific single guide RNA (sgRNA) followed by degradation with T5 exonuclease to generate a 15 nt homologous region. Second, primers containing the desired mutations are annealed to form the double-stranded DNA fragments, which are then ligated into the linearized plasmid. In theory, neither the size of the target plasmid nor the unavailable restriction enzyme site poses any problems that may arise in traditional techniques. In this study, single and multiple site-directed mutagenesis were successfully performed even for a large size plasmid (up to 9.0 kb). Moreover, a PCR-free site-saturation mutagenesis library on single site and two adjacent sites of a green fluorescent protein was also generated with promising results. This demonstrates the great potential of the ICM system for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wenwen She
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jing Ni
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ruyi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jinhui Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
42
|
Danneels B, Tanghe M, Desmet T. Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide Monooxygenases Determine Their Oxidative Regioselectivity. Biotechnol J 2018; 14:e1800211. [PMID: 30238672 DOI: 10.1002/biot.201800211] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Indexed: 01/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave many of nature's most recalcitrant polysaccharides by acting on the C1- and/or C4-carbon of the glycosidic bond. Here, the results of an extensive mutagenesis study on three LPMO representatives, Phanerochaete chrysosporium LPMO9D (C1-oxidizer), Neurospora crassa LPMO9C (C4), and Hypocrea jecorina LPMO9A (C1/C4), are reported. Using a previously published indicator diagram, the authors demonstrate that several structural determinants of LPMOs play an important role in their oxidative regioselectivity. N-glycan removal and alterations of the aromatic residues on the substrate-binding surface are shown to alter C1/C4-oxidation ratios. Removing the carbohydrate binding module (CBM) is found not to alter the regioselectivity of HjLPMO9A, although the effect of mutational changes is shown to increase in a CBM-free context. The accessibility to the solvent-exposed axial position of the copper-site reveales not to be a major regioselectivity indicator, at least not in PcLPMO9D. Interestingly, a HjLPMO9A variant lacking two surface exposed aromatic residues combines decreased binding capacity with a 22% increase in synergetic efficiency. Similarly to recent LPMO10 findings, our results suggest a complex matrix of surface-interactions that enables LPMO9s not only to bind their substrate, but also to accurately direct their oxidative force.
Collapse
Affiliation(s)
- Barbara Danneels
- Department of Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Magali Tanghe
- Department of Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
43
|
Li A, Sun Z, Reetz MT. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? Chembiochem 2018; 19:2023-2032. [PMID: 30044530 DOI: 10.1002/cbic.201800339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of, Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
- Department of Chemistry; Philipps University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
44
|
Li JF, Li XQ, Liu Y, Yuan FJ, Zhang T, Wu MC, Zhang JR. Directed modification of l - Lc LDH1, an l -lactate dehydrogenase from Lactobacillus casei , to improve its specific activity and catalytic efficiency towards phenylpyruvic acid. J Biotechnol 2018; 281:193-198. [DOI: 10.1016/j.jbiotec.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
|
45
|
Zhou J, Wang Y, Chen J, Xu M, Yang T, Zheng J, Zhang X, Rao Z. Rational Engineering of Bacillus cereus
Leucine Dehydrogenase Towards α-keto Acid Reduction for Improving Unnatural Amino Acid Production. Biotechnol J 2018; 14:e1800253. [DOI: 10.1002/biot.201800253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junping Zhou
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Yaling Wang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Jiajie Chen
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Junxian Zheng
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu Province 214122 China
| |
Collapse
|
46
|
Wang XX, Lin CP, Zhang XJ, Liu ZQ, Zheng YG. Improvement of a newly cloned carbonyl reductase and its application to biosynthesize chiral intermediate of duloxetine. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Duan X, Krycer JR, Cooke KC, Yang G, James DE, Fazakerley DJ. Membrane Topology of Trafficking Regulator of GLUT4 1 (TRARG1). Biochemistry 2018; 57:3606-3615. [PMID: 29787242 DOI: 10.1021/acs.biochem.8b00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trafficking regulator of GLUT4 1 (TRARG1) was recently identified to localize to glucose transporter type 4 (GLUT4) storage vesicles (GSVs) and to positively regulate GLUT4 trafficking. Our knowledge of TRARG1 structure and membrane topology is limited to predictive models, hampering efforts to further our mechanistic understanding of how it carries out its functions. Here, we use a combination of bioinformatics prediction tools and biochemical assays to define the membrane topology of the 173-amino acid mouse TRARG1. These analyses revealed that, contrary to the consensus prediction, the N-terminus is cytosolic and that a short segment at the C-terminus resides in the luminal/extracellular space. Based on our biochemical analyses including membrane association and antibody accessibility assays, we conclude that TRARG1 has one transmembrane domain (TMD) (145-172) and a re-entrant loop between residues 101 and 127.
Collapse
Affiliation(s)
- Xiaowen Duan
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia.,Sydney Medical School , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences , The University of Sydney , Sydney , New South Wales 2006 , Australia
| |
Collapse
|
48
|
Li A, Acevedo-Rocha CG, Reetz MT. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl Microbiol Biotechnol 2018; 102:6095-6103. [PMID: 29785500 PMCID: PMC6013526 DOI: 10.1007/s00253-018-9041-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Site-saturation mutagenesis (SSM) has been used in directed evolution of proteins for a long time. As a special form of saturation mutagenesis, it involves individual randomization at a given residue with formation of all 19 amino acids. To date, the most efficient embodiment of SSM is a one-step PCR-based approach using NNK codon degeneracy. However, in the case of difficult-to-randomize genes, SSM may not deliver all of the expected 19 mutants, which compels the user to invest further efforts by applying site-directed mutagenesis for the construction of the missing mutants. To solve this problem, we developed a two-step PCR-based technique in which a mutagenic primer and a non-mutagenic (silent) primer are used to generate a short DNA fragment, which is recovered and then employed as a megaprimer to amplify the whole plasmid. The present two-step and older one-step (partially overlapped primer approach) procedures were compared by utilizing cytochrome P450-BM3, which is a "difficult-to-randomize" gene. The results document the distinct superiority of the new method by checking the library quality on DNA level based on massive sequence data, but also at amino acid level. Various future applications in biotechnology can be expected, including the utilization when constructing mutability landscapes, which provide semi-rational information for identifying hot spots for protein engineering and directed evolution.
Collapse
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany.,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | | | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany. .,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany.
| |
Collapse
|
49
|
Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Appl Microbiol Biotechnol 2018; 102:3183-3191. [DOI: 10.1007/s00253-018-8856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/29/2022]
|
50
|
Fan B, Dong W, Chen T, Chu J, He B. Switching glycosyltransferase UGTBL1 regioselectivity toward polydatin synthesis using a semi-rational design. Org Biomol Chem 2018; 16:2464-2469. [DOI: 10.1039/c8ob00376a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conduct structure-guided modification on the “hotspot” of glycosyltransferase UGTBL1 to significantly adjust its regioselectivity toward polydatin production.
Collapse
Affiliation(s)
- Bo Fan
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wenxin Dong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tianyi Chen
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jianlin Chu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
- Jiangsu National Synergetic Innovation Center for Advanced Materials
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- School of Pharmaceutical Sciences
| |
Collapse
|