1
|
Jansen LM, Hendriks VCA, Bentlage H, Ranoux A, Raaijmakers HWC, Boltje TJ. The Industrial Application Potential of Sugar Beet Pulp Derived Monosaccharides d-Galacturonic Acid and l-Arabinose. Chembiochem 2024; 25:e202400521. [PMID: 39324499 DOI: 10.1002/cbic.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
This review provides a perspective on the industrial application potential of sugar beet pulp (SBP) derived monosaccharides. The broad application of these monosaccharides could contribute to bio-based alternatives and sustainable practices, essential for the transition towards a more circular economy. This review focuses on the utilization and application of two SBP monosaccharides, d-galacturonic acid (d-GalA) and l-arabinose (l-Ara), derived from pectin and hemicellulose. These polysaccharides are major components of sugar beet pulp, an important side stream of sucrose production. d-GalA and l-Ara are therefore abundant in biomass and offer unique molecular structures amenable to selective chemical or enzymatic modifications. We review their application in various industrial applications such as the development and production of bioactive compounds, home and personal care products, and other industries.
Collapse
Affiliation(s)
- Laura M Jansen
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The, Netherlands
| | - Veronique C A Hendriks
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The, Netherlands
| | - Herman Bentlage
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The, Netherlands
| | - Adeline Ranoux
- Cosun RD&I, Cosun Innovation Center, Dinteloord, The, Netherlands
| | | | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The, Netherlands
| |
Collapse
|
2
|
Han Z, Li N, Xu H, Xu Z. Improved thermostability and robustness of L-arabinose isomerase by C-terminal elongation and its application in rare sugar production. Biochem Biophys Res Commun 2022; 637:224-231. [DOI: 10.1016/j.bbrc.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
3
|
Enhancement of L-ribulose Production from L-ribose Through Modification of Ochrobactrum sp. CSL1 Ribose-5-phosphate Isomerase A. Appl Biochem Biotechnol 2022; 194:4852-4866. [PMID: 35670905 DOI: 10.1007/s12010-022-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
L-ribulose, a kind of high-value rare sugar, could be utilized to manufacture L-form sugars and antiviral drugs, generally produced from L-arabinose as a substrate. However, the production of L-ribulose from L-arabinose is limited by the equilibrium ratio of the catalytic reaction, hence, it is necessary to explore a new biological enzymatic method to produce L-ribulose. Ribose-5-phosphate isomerase (Rpi) is an enzyme that can catalyze the reversible isomerization between L-ribose and L-ribulose, which is of great significance for the preparation of L-ribulose. In order to obtain highly active ribose-5-phosphate isomerase to manufacture L-ribulose, ribose-5-phosphate isomerase A (OsRpiA) from Ochrobactrum sp. CSL1 was engineered based on structural and sequence analyses. Through a rational design strategy, a triple-mutant strain A10T/T32S/G101N with 160% activity was acquired. The enzymatic properties of the mutant were systematically investigated, and the optimum conditions were characterized to achieve the maximum yield of L-ribulose. Kinetic analysis clarified that the A10T/T32S/G101N mutant had a stronger affinity for the substrate and increased catalytic efficiency. Furthermore, molecular dynamics simulations indicated that the binding of the substrate to A10T/T32S/G101N was more stable than that of wild type. The shorter distance between the catalytic residues of A10T/T32S/G101N and L-ribose illuminated the increased activity. Overall, the present study provided a solid basis for demonstrating the complex functions of crucial residues in RpiAs as well as in rare sugar preparation.
Collapse
|
4
|
Kuznetsov B, Sudakova I, Garyntseva N, Tarabanko V, Yatsenkova O, Djakovitch L, Rataboul F. Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Singh A, Rai SK, Manisha M, Yadav SK. Immobilized L-ribose isomerase for the sustained synthesis of a rare sugar D-talose. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
A review on l-ribose isomerases for the biocatalytic production of l-ribose and l-ribulose. Food Res Int 2021; 145:110409. [PMID: 34112412 DOI: 10.1016/j.foodres.2021.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
Collapse
|
7
|
Conversion of L-arabinose to L-ribose by genetically engineered Candida tropicalis. Bioprocess Biosyst Eng 2021; 44:1147-1154. [PMID: 33559750 PMCID: PMC7871310 DOI: 10.1007/s00449-020-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022]
Abstract
l-Ribose, a starting material for the synthesis of l-nucleoside, has attracted lots of attention since l-nucleoside is responsible for the antiviral activities of the racemic mixtures of nucleoside enantiomers. In this study, the l-ribulose-producing Candida tropicalis strain was engineered for the conversion of l-arabinose to l-ribose. For the construction of a uracil auxotroph, the URA3 gene was excised by homologous recombination. The expression cassette of codon-optimized l-ribose isomerase gene from Acinetobacter calcoaceticus DL-28 under the control of the GAPDH promoter was integrated to the uracil auxotroph. The resulting strain, K1 CoSTP2 LsaAraA AcLRI, was cultivated with the glucose/l-arabinose mixture. At 45.5 h of fermentation, 6.0 g/L of l-ribose and 3.2 g/L of l-ribulose were produced from 30 g/L of l-arabinose. The proportion between l-ribose and l-ribulose was approximately 2:1 and the conversion yield of l-arabinose to l-ribose was about 20% (w/w). The l-ribose-producing yeast strain was successfully constructed for the first time and could convert l-arabinose to l-ribose in one-pot fermentation using the mixture of glucose and l-arabinose.
Collapse
|
8
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
9
|
Mahmood S, Iqbal MW, Riaz T, Zhang W, Mu W. Characterization of recombinant L-ribose isomerase acquired from Cryobacterium sp. N21 with potential application in L-ribulose production. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Characterization of an L-Arabinose Isomerase from Bacillus velezensis and Its Application for L-Ribulose and L-Ribose Biosynthesis. Appl Biochem Biotechnol 2020; 192:935-951. [PMID: 32617845 DOI: 10.1007/s12010-020-03380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
L-Ribulose and L-ribose are two high-value unnatural sugars that can be biosynthesized by sugar isomerases. In this paper, an L-arabinose isomerase (BvAI) from Bacillus velezensis CICC 24777 was cloned and overexpressed in Escherichia coli BL21 (DE3) strain. The maximum activity of recombinant BvAI was observed at 45 °C and pH 8.0, in the presence of 1.0 mM Mn2+. Approximately 207.2 g/L L-ribulose was obtained from 300 g/L L-arabinose in 1.5 h by E. coli harboring BvAI. In addition, approximately 74.25 g/L L-ribose was produced from 300 g/L L-arabinose in 7 h by E. coli co-expressing BvAI and L-RI from Actinotalea fermentans ATCC 43279 (AfRI). This study provides a feasible approach for producing L-ribose from L-arabinose using a co-expression system harboring L-Al and L-RI.
Collapse
|
11
|
Chen M, Wu H, Zhang W, Mu W. Microbial and enzymatic strategies for the production of L-ribose. Appl Microbiol Biotechnol 2020; 104:3321-3329. [PMID: 32088757 DOI: 10.1007/s00253-020-10471-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
L-Ribose is a non-naturally occurring pentose that recently has become known for its potential application in the pharmaceutical industry, as it is an ideal starting material for use in synthesizing L-nucleosides analogues, an important class of antiviral drugs. In the past few decades, the synthesis of L-ribose has been mainly undertaken through the chemical route. However, chemical synthesis of L-ribose is difficult to achieve on an industrial scale. Therefore, the biotechnological production of L-ribose has gained considerable attention, as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of L-ribose through microbial biotransformation and enzymatic catalysis, and in particular on an analysis and comparison of the synthetic methods and different enzymes. The physiological functions and applications of L-ribose are also elucidated. In addition, different sugar isomerases involved in the production of L-ribose from a number of sources are discussed in detail with regard to their biochemical properties. Furthermore, analysis of the separation issues of L-ribose from the reaction solution and different purification methods is presented.Key points • l -Arabinose, l -ribulose and ribitol can be used to produce l -ribose by enzymes. • Five enzymes are systematically introduced for production of l -ribose. • Microbial transformation and enzymatic methods are promising for yielding l -ribose.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
12
|
Mahmood S, Iqbal MW, Riaz T, Hassanin HA, Zhu Y, Ni D, Mu W. Characterization of a recombinant l-ribose isomerase from Mycetocola miduiensis and its application for the production of l-ribulose. Enzyme Microb Technol 2020; 135:109510. [DOI: 10.1016/j.enzmictec.2020.109510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/30/2022]
|
13
|
Wu H, Huang J, Deng Y, Zhang W, Mu W. Production of l-ribose from l-arabinose by co-expression of l-arabinose isomerase and d-lyxose isomerase in Escherichia coli. Enzyme Microb Technol 2020; 132:109443. [DOI: 10.1016/j.enzmictec.2019.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
14
|
Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H, Gao XD. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4868-4875. [PMID: 30995033 DOI: 10.1021/acs.jafc.9b00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rare sugar l-ribulose is produced from the abundant sugar l-arabinose by enzymatic conversion. An l-arabinose isomerase (AI) from Geobacillus thermodenitrificans was efficiently expressed and encapsulated in Saccharomyces cerevisiae spores. Deletion of the yeast OSW2 gene, which causes a mild defect in the integrity of the spore wall, substantially improved the activity of encapsulated AI, without damaging its superior enzymatic properties of thermostability, pH tolerance,and resistance toward SDS and proteinase treatments. In a 10 mL reaction, 100 mg of dry AI encapsulated in spores produced 250 mg of l-ribulose from 1 g of l-arabinose, indicating a 25% conversion rate. Notably, the product of l-ribulose was directly purified from the reaction solution with an approximately 91% recovery using a Ca2+ ion exchange column. Our results describe not only a facile approach for the production of l-ribulose but also a useful strategy for the enzymatic conversion of rare sugars in "Izumoring".
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yahui Gao
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
15
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
16
|
d-lyxose isomerase and its application for functional sugar production. Appl Microbiol Biotechnol 2018; 102:2051-2062. [DOI: 10.1007/s00253-018-8746-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
17
|
Tseng WC, Wu TJ, Chang YJ, Cheng HW, Fang TY. Overexpression and characterization of a recombinant l -ribose isomerase from Actinotalea fermentans ATCC 43279. J Biotechnol 2017; 259:168-174. [DOI: 10.1016/j.jbiotec.2017.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
|
18
|
A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase. Enzyme Microb Technol 2017; 97:27-33. [DOI: 10.1016/j.enzmictec.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
19
|
l-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for l-ribose production. Appl Microbiol Biotechnol 2016; 100:9003-9011. [DOI: 10.1007/s00253-016-7834-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
|
20
|
Li J, Yang J, Men Y, Zeng Y, Zhu Y, Dong C, Sun Y, Ma Y. Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-D-ribose 5-phosphate aldolase. Appl Microbiol Biotechnol 2015; 99:7963-72. [PMID: 26104867 DOI: 10.1007/s00253-015-6740-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/07/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
Abstract
2-Deoxy-D-ribose 5-phosphate aldolase (DERA) accepts a wide variety of aldehydes and is used in de novo synthesis of 2-deoxysugars, which have important applications in drug manufacturing. However, DERA has low preference for non-phosphorylated substrates. In this study, DERA from Klebsiella pneumoniae (KDERA) was mutated to increase its enzyme activity and substrate tolerance towards non-phosphorylated polyhydroxy aldehyde. Mutant KDERA(K12) (S238D/F200I/ΔY259) showed a 3.15-fold improvement in enzyme activity and a 1.54-fold increase in substrate tolerance towards D-glyceraldehyde compared with the wild type. Furthermore, a whole-cell transformation strategy using resting cells of the BL21(pKDERA12) strain, containing the expressed plasmid pKDERA12, resulted in increase in 2-deoxy-D-ribose yield from 0.41 mol/mol D-glyceraldehyde to 0.81 mol/mol D-glyceraldehyde and higher substrate tolerance from 0.5 to 3 M compared to in vitro assays. With further optimization of the transformation process, the BL21(pKDERA12) strain produced 2.14 M (287.06 g/L) 2-deoxy-D-robose (DR), with a yield of 0.71 mol/mol D-glyceraldehyde and average productivity of 0.13 mol/L·h (17.94 g/L·h). These results demonstrate the potential for large-scale production of 2-deoxy-D-ribose using the BL21(pKDERA12) strain. Furthermore, the BL21(pKDERA12) strain also exhibited the ability to efficiently produce 2-deoxy-D-altrose from D-erythrose, as well as 2-deoxy-L-xylose and 2-deoxy-L-ribose from L-glyceraldehyde.
Collapse
Affiliation(s)
- Jitao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim KR, Seo ES, Oh DK. L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans. Appl Biochem Biotechnol 2014; 172:275-88. [PMID: 24078190 DOI: 10.1007/s12010-013-0547-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 09/18/2013] [Indexed: 11/24/2022]
Abstract
L-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the L-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l L-ribose from 300 g/l L-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co(2+), with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h(-1) produced an average of 100 g/l L-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for L-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from L-arabinose as the substrate.
Collapse
|
22
|
Xu Z, Li S, Feng X, Liang J, Xu H. L-Arabinose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2014; 98:8869-78. [PMID: 25280744 DOI: 10.1007/s00253-014-6073-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
L-Arabinose isomerase (AI), a key enzyme in the microbial pentose phosphate pathway, has been regarded as an important biological catalyst in rare sugar production. This enzyme could isomerize L-arabinose into L-ribulose, as well as D-galactose into D-tagatose. Both the two monosaccharides show excellent commercial values in food and pharmaceutical industries. With the identification of novel AI family members, some of them have exhibited remarkable potential in industrial applications. The biological production processes for D-tagatose and L-ribose (or L-ribulose) using AI have been developed and improved in recent years. Meanwhile, protein engineering techniques involving rational design has effectively enhanced the catalytic properties of various AIs. Moreover, the crystal structure of AI has been disclosed, which sheds light on the understanding of AI structure and catalytic mechanism at molecular levels. This article reports recent developments in (i) novel AI screening, (ii) AI-mediated rare sugar production processes, (iii) molecular modification of AI, and (iv) structural biology study of AI. Based on previous reports, an analysis of the future development has also been initiated.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. Structure 2014; 22:1287-1300. [DOI: 10.1016/j.str.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
|
24
|
Yoshida H, Yoshihara A, Teraoka M, Terami Y, Takata G, Izumori K, Kamitori S. X-ray structure of a novell-ribose isomerase acting on a non-natural sugarl-ribose as its ideal substrate. FEBS J 2014; 281:3150-64. [DOI: 10.1111/febs.12850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine; Kagawa University; Japan
| | | | - Misa Teraoka
- Life Science Research Center and Faculty of Medicine; Kagawa University; Japan
| | - Yuji Terami
- Rare Sugar Research Center; Kagawa University; Japan
| | - Goro Takata
- Rare Sugar Research Center; Kagawa University; Japan
| | - Ken Izumori
- Rare Sugar Research Center; Kagawa University; Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine; Kagawa University; Japan
| |
Collapse
|
25
|
Analytical method development for directed enzyme evolution research: A high throughput high-performance liquid chromatography method for analysis of ribose and ribitol and a capillary electrophoresis method for the separation of ribose enantiomers. J Chromatogr A 2013; 1271:163-9. [DOI: 10.1016/j.chroma.2012.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 11/21/2022]
|
26
|
Li L, Zhang H, Fu J, Hu C, Zheng Y, Qiu Y. Enhancement of ribitol production during fermentation of Trichosporonoides oedocephalis ATCC 16958 by optimizing the medium and altering agitation strategies. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0359-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Yoshida H, Teraoka M, Yoshihara A, Izumori K, Kamitori S. Overexpression, crystallization and preliminary X-ray diffraction analysis of L-ribose isomerase from Acinetobacter sp. strain DL-28. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1281-4. [PMID: 22102048 DOI: 10.1107/s1744309111030351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/27/2011] [Indexed: 05/26/2023]
Abstract
Acinetobacter sp. L-ribose isomerase (L-RI) catalyzes a reversible isomerization reaction between L-ribose and L-ribulose. To date, information on L-RI remains limited and its amino-acid sequence shows no similarity to those of any known enzymes. Here, recombinant His-tagged L-RI was successfully overexpressed, purified and crystallized. Crystals of His-tagged L-RI were obtained by the hanging-drop vapour-diffusion method at room temperature as two crystal forms which belonged to the monoclinic space group C2, with unit-cell parameters a = 96.60, b = 105.89, c = 71.83 Å, β = 118.16°, and the orthorhombic space group F222, with unit-cell parameters a = 96.44, b = 106.26, c = 117.83 Å. Diffraction data were collected to 3.1 and 2.2 Å resolution, respectively.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita-gun, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|
29
|
Hu C, Li L, Zheng Y, Rui L, Hu C. Perspectives of biotechnological production of l-ribose and its purification. Appl Microbiol Biotechnol 2011; 92:449-55. [DOI: 10.1007/s00253-011-3552-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/08/2011] [Accepted: 08/13/2011] [Indexed: 12/28/2022]
|
30
|
Patel DH, Wi SG, Lee SG, Lee DS, Song YH, Bae HJ. Substrate specificity of the Bacillus licheniformis lyxose isomerase YdaE and its application in in vitro catalysis for bioproduction of lyxose and glucose by two-step isomerization. Appl Environ Microbiol 2011; 77:3343-50. [PMID: 21421786 PMCID: PMC3126444 DOI: 10.1128/aem.02693-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/10/2011] [Indexed: 12/25/2022] Open
Abstract
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on D-lyxose, suggesting that the enzyme is D-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn²+. The apparent K(m) values for D-lyxose and D-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (k(cat)/K(m)) for lyxose (3.2 ± 0.1 mM⁻¹ s⁻¹) was higher than that for D-mannose (1.6 mM⁻¹ s⁻¹). The purified protein was applied to the bioproduction of D-lyxose and D-glucose from d-xylose and D-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM D-lyxose and D-mannose, 3.7 mM and 3.8 mM D-lyxose and D-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.
Collapse
Affiliation(s)
- Darshan H. Patel
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Gon Wi
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seong-Gene Lee
- Department of Biotechnology, Bio-energy Research Center, Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Youn-ho Song
- Department of Biotechnology, Bio-energy Research Center, Biotechnology Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Forest Products and Technology (BK21 Program), Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
31
|
Characterization of a mannose-6-phosphate isomerase from Thermus thermophilus and increased L-ribose production by its R142N mutant. Appl Environ Microbiol 2010; 77:762-7. [PMID: 21115698 DOI: 10.1128/aem.01793-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An uncharacterized gene from Thermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme for L-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu(2+). Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion of L-ribulose to L-ribose, a potential starting material for many L-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase in L-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. The k(cat)/K(m) of the R142N mutant was 3.8-fold higher than that of Geobacillus thermodenitrificans mannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reported k(cat)/K(m). The R142N mutant enzyme produced 213 g/liter L-ribose from 300 g/liter L-ribulose for 2 h, with a volumetric productivity of 107 g liter(-1) h(-1), which was 1.5-fold higher than that of the wild-type enzyme.
Collapse
|
32
|
l-Ribulose production by an Escherichia coli harboring l-arabinose isomerase from Bacillus licheniformis. Appl Microbiol Biotechnol 2010; 87:1993-9. [DOI: 10.1007/s00253-010-2600-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/30/2010] [Accepted: 04/04/2010] [Indexed: 11/26/2022]
|
33
|
L-ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus thermodenitrificans. Appl Environ Microbiol 2009; 75:6941-3. [PMID: 19749063 DOI: 10.1128/aem.01867-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two enzymes, L-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter L-ribose from 500 g/liter L-arabinose at pH 7.0, 70 degrees C, and 1 mM Co(2+) for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter(-1) h(-1).
Collapse
|