1
|
Li F, Dong C, Chen T, Yu S, Chen C. Current Advances and Future Prospects of Bulk and Microfluidic-Enabled Electroporation Systems. Biotechnol Bioeng 2025; 122:1347-1365. [PMID: 40042165 DOI: 10.1002/bit.28965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Reversible electroporation (EP) is a pivotal biophysical technology that leverages pulsed electric fields to enhance the permeability of cell membranes, thereby facilitating the introduction of foreign material into cells. In this review, we provide an overview of bulk electroporators and microfluidic-enabled EP systems, focusing on their controversial points of mechanisms, architectures, and parameter settings. Bulk electroporators have been extensively commercialized with settled form including pulse generator and accessories (i.e., EP cuvette and plates). Researchers have made efforts to increase the throughput and simplify the operation of bulk EP systems. Additionally, microfluidics has emerged as a promising technology for optimizing EP parameters and enhancing the performance. Given the significant structural differences between these two types of EP systems, their operating conditions such as temperature, voltage, and pulse parameters are discussed. Research tend to operate single cells under more concentrated electric field induced by low voltage, enabling a quantitative exogenous materials delivery and numerical simulation. However, due to cost constraints and properties of materials utilized in laboratories, the commercialization of laboratory prototypes has been impeded. Furthermore, the technological limitations, current commercialization status, and development trends have been examined.
Collapse
Affiliation(s)
- Fei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Digifluidic Biotech Inc., Zhuhai, China
| | - Cheng Dong
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai, China
| | | | - Siming Yu
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, China
| |
Collapse
|
2
|
Zhang Z, Zhu N, Yang G, Leng F, Wang Y. Bioinformatics analysis of gene bhsA and its role in Ca 2+ -treated Escherichia coli. J Basic Microbiol 2024; 64:e2300222. [PMID: 37919047 DOI: 10.1002/jobm.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 11/04/2023]
Abstract
One of the commonly employed methods in molecular biology is to utilize calcium chloride to treat Escherichia coli for the preparation of competent cells to facilitate foreign gene expression. However, the molecular mechanisms underlying Ca2+ mediation of competent cell formation and identification of the key genes involved in the process remain unclear. In previous studies, the combined analysis of transcriptomics and proteomics revealed bhsA as one of the crucial genes. The gene ontology functional annotation of bhsA identified it as a member of the YhcN family encoding an outer membrane protein that confers resistance to various stresses. The IPR0108542 domain found within the protein plays a significant role in stress response and biofilm formation in E. coli. Analysis of the STRING database showed that the proteins interacting with bhsA are primarily involved in biofilm formation and stress resistance. Using the RED homologous recombination method, a bhsA deletion strain was constructed to verify its role in E. coli genetic transformation. Although the mutant strain showed no significant differences in morphology or growth trend when compared to the wild-type strain, its transformation efficiency decreased by 1.14- and 1.64-fold with plasmids pUC19 and pET-32a. Furthermore, the 1-N-phenylnaphthylamine assay indicated a 1.71-fold reduction in cell membrane permeability in the mutant strain.
Collapse
Affiliation(s)
- Zefang Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co., Ltd., Lanzhou, China
- Gansu Business Science and Technology Institute Co., Ltd., Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
3
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Cornuault JK. CRISPRpi: Inducing and Curing Prophage Using the CRISPR Interference. Methods Mol Biol 2024; 2793:257-271. [PMID: 38526735 DOI: 10.1007/978-1-0716-3798-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We present here a CRISPR-interference-based protocol to trigger prophage induction, even for non-inducible prophages. This method can also be used to cure the prophage from the bacterial host. The method is based on silencing of the phage's repressor transcription, thanks to CRISPR interference. Plasmid electroporation is used to bring the CRISPRi system into the bacteria, specifically on a plasmid carrying spacers targeting the prophage repressor. This method enables prophage induction and curation in a week or two with a high efficiency.
Collapse
Affiliation(s)
- Jeffrey K Cornuault
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Yang Z, Li Z, Li B, Bu R, Tan GY, Wang Z, Yan H, Xin Z, Zhang G, Li M, Xiang H, Zhang L, Wang W. A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering. Nat Commun 2023; 14:6193. [PMID: 37794017 PMCID: PMC10551041 DOI: 10.1038/s41467-023-41973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Thermophilic cell factories have remarkably broad potential for industrial applications, but are limited by a lack of genetic manipulation tools and recalcitrance to transformation. Here, we identify a thermophilic type I-B CRISPR-Cas system from Parageobacillus thermoglucosidasius and find it displays highly efficient transcriptional repression or DNA cleavage activity that can be switched by adjusting crRNA length to less than or greater than 26 bp, respectively, without ablating Cas3 nuclease. We then develop an orthogonal tool for genome editing and transcriptional repression using this type I-B system in both thermophile and mesophile hosts. Empowered by this tool, we design a strategy to screen the genome-scale targets involved in transformation efficiency and established dynamically controlled supercompetent P. thermoglucosidasius cells with high efficiency ( ~ 108 CFU/μg DNA) by temporal multiplexed repression. We also demonstrate the construction of thermophilic riboflavin cell factory with hitherto highest titers in high temperature fermentation by genome-scale identification and combinatorial manipulation of multiple targets. This work enables diverse high-efficiency genetic manipulation in P. thermoglucosidasius and facilitates the engineering of thermophilic cell factories.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bixiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, 266003, Qingdao, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Abianeh HS, Nazarian S, Sadeghi D, Razgi ASH, Samarin MZ. PLGA nanoparticles containing Intimin-Flagellin fusion protein for E. coli O157:H7 nano-vaccine. J Immunol Methods 2023; 520:113517. [PMID: 37385434 DOI: 10.1016/j.jim.2023.113517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that can lead to severe gastrointestinal diseases in humans. Vaccination is a promising strategy for preventing E. coli O157:H7 infections, which offers socio-economic benefits and provides the possibility of stimulating both humoral and cellular immune responses at systemic and mucosal sites. In this study, we developed a needle-free vaccine candidate against E. coli O157:H7 using poly(lactic-co-glycolic acid) (PLGA) nanoparticles entrapping a chimeric Intimin-Flagellin (IF) protein. The IF protein was expressed and verified using SDS-PAGE and western blot analysis, with a yield of 1/7 mg/L and a molecular weight of approximately 70 kDa. The prepared nanoparticles showed uniformly shaped spherical particles in the 200-nm range, as confirmed by SEM and DLS analysis. Three different routes of vaccine administration were used, including intranasal, oral, and subcutaneous, and the groups vaccinated with NPs protein had a higher antibody response compared to those receiving free protein. Subcutaneous administration of IF-NPs resulted in the highest level of IgG antibody titer, while oral administration of IF-NPs produced the highest amount of IgA antibody titer. Finally, all mice in the nanoparticle- intranasal and oral administered groups challenged with 100LD50 survived, while all control mice died before day 5. Based on these findings, we conclude that the PLGA-encapsulated IF protein has the potential to serve as a promising needle-free vaccine candidate against E. coli O157:H7.
Collapse
Affiliation(s)
- Hossein Samiei Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Davoud Sadeghi
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | | | | |
Collapse
|
7
|
Chen S, Fu J, Yu B, Wang L. Development of a Conjugation-Based Genome Editing System in an Undomesticated Bacillus subtilis Strain for Poly-γ-glutamic Acid Production with Diverse Molecular Masses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7734-7743. [PMID: 37186794 DOI: 10.1021/acs.jafc.3c01505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable polymer produced by microorganisms. Biosynthesizing γ-PGA with diverse molecular masses (Mw) is an urgent industrial technical problem to be solved. Bacillus subtilis KH2, a high-Mw γ-PGA producer, is an ideal candidate for de novo production of γ-PGA with diverse Mw values. However, the inability to transfer DNA to this strain has limited its industrial use. In this study, a conjugation-based genetic operating system was developed in strain KH2. This system enabled us to modify the promoter of γ-PGA hydrolase PgdS in strain KH2 chromosome to de novo biosynthesize γ-PGA with diverse Mws. The conjugation efficiency was improved to 1.23 × 10-4 by establishing a plasmid replicon sharing strategy. A further increase to 3.15 × 10-3 was achieved after knocking out two restriction endonucleases. To demonstrate the potential of our newly established system, the pgdS promoter was replaced by different phase-dependent promoters. A series of strains producing γ-PGA with specific Mws of 411.73, 1356.80, 2233.30, and 2411.87 kDa, respectively, were obtained. The maximum yield of γ-PGA was 23.28 g/L. Therefore, we have successfully constructed ideal candidate strains for efficient γ-PGA production with a specific Mw value, which provides an important research basis for sustainable production of desirable γ-PGA.
Collapse
Affiliation(s)
- Shengbao Chen
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaming Fu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Markowicz A. The significance of metallic nanoparticles in the emerging, development and spread of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162029. [PMID: 36740055 DOI: 10.1016/j.scitotenv.2023.162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An ever-increasing number of newly synthesised nanoparticles have a constantly expanding range of applications. The large-scale implementation of nanoparticles will inevitably lead to intentional or accidental contamination of various environments. Since the major benefit of using several metallic nanoparticles is antimicrobial activity, these emerging contaminants may have a potentially hazardous impact on the development and spread of antibiotic resistance - a challenge that threats infection therapy worldwide. Few studies underline that metallic nanoparticles may affect the emergence and evolution of resistance via mutations and horizontal transfer between different bacterial species. Due to the complexity of factors and mechanisms involved in disseminating antibiotic resistance, it is crucial to investigate if metallic nanoparticles play a significant role in this process through co-selection ability and pressure exerted on bacteria. The aim of this review is to summarise the current research on mutations and three main horizontal gene transfer modes facilitated by nanoparticles. Here, the current results in the field are presented, major knowledge gaps and the necessity for more environmentally relevant studies are discussed.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
9
|
Halloysite Nanotubes and Sepiolite for Health Applications. Int J Mol Sci 2023; 24:ijms24054801. [PMID: 36902232 PMCID: PMC10003602 DOI: 10.3390/ijms24054801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals are widely used in drug products both as excipients and active agents but, in recent years, there has been a growing interest in research aimed at the development of new organic or inorganic nanocomposites. The attention of the scientific community has been drawn by nanoclays, thanks to their natural origin, worldwide abundance, availability, sustainability, and biocompatibility. In this review, we focused our attention on the studies inherent to the pharmaceutical and biomedical applications of halloysite and sepiolite, and their semi-synthetic or synthetic derivatives, as drug delivery systems. After having described the structure of both materials and their biocompatibility, we delineate the use of the nanoclays to enhance the stability, the controlled release, the bioavailability, and the adsorption properties of drugs. Several types of surface functionalization have been discussed, showing that these materials could be used for the development of an innovative therapeutic approach.
Collapse
|
10
|
Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. MICROBIOME RESEARCH REPORTS 2023; 2:1. [PMID: 38059211 PMCID: PMC10696588 DOI: 10.20517/mrr.2022.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 12/08/2023]
Abstract
Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.
Collapse
Affiliation(s)
- Paul O. Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Ma’en Al Odat
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
11
|
Transformation of Bacillus thuringiensis plasmid DNA by a new polyethylenimine polymeric nanoparticles method. J Microbiol Methods 2022; 203:106622. [PMID: 36384173 DOI: 10.1016/j.mimet.2022.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Although electroporation technique has been mostly used to transform Bacillus thuringiensis (Bt), this method is not readily applicable to strains other than the one for which it was optimized. Polyethylenimine (PEI) is a golden standard non-viral vector that interacts with plasmids to form compact polymeric nanoparticles (PNPs) via electrostatic interactions. This PNPs system is very attractive because they are easily prepared, able to carry large nucleic acid constructs, and show low toxicity. In this study, PEI/pBTdsSBV-VP1 PNPs were successfully prepared at various N/P ratios which is positively-chargeable polymer amine (N = nitrogen) groups to negatively-charged nucleic acid phosphate (P) groups, and the internalization of the complexes into Bt 4Q7 was confirmed by confocal laser scanning microscopy. The PEI-mediated transformation showed similar efficiency comparable to that of electroporation method, suggesting that the method of PNPs will be an effective alternative for transformation of Bt strains.
Collapse
|
12
|
Huang PH, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLoS Biol 2022; 20:e3001727. [PMID: 36067229 PMCID: PMC9481174 DOI: 10.1371/journal.pbio.3001727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
13
|
Tomoiaga D, Bubnell J, Herndon L, Feinstein P. High rates of plasmid cotransformation in E. coli overturn the clonality myth and reveal colony development. Sci Rep 2022; 12:11515. [PMID: 35798773 PMCID: PMC9262894 DOI: 10.1038/s41598-022-14598-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The concept of DNA transfer between bacteria was put forth by Griffith in 1928. During the dawn of molecular cloning of DNA in the 1980s, Hanahan described how the transformation of DNA plasmids into bacteria would allow for cloning of DNA fragments. Through this foundational work, it is widely taught that a typical transformation produces clonal bacterial colonies. Using low concentrations of several plasmids that encode different fluorescent proteins, under the same selective antibiotic, we show that E. coli bacteria readily accept multiple plasmids, resulting in widespread aclonality and reveal a complex pattern of colony development. Cotransformation of plasmids occurs by either CaCl2 or by electroporation methods. A bacterium rod transformed with three plasmids-each expressing a high level of a unique fluorescent protein-and replated on agar, appears to reassign a random number of the three fluorescent plasmids to its daughter cell during cell division. The potential to simultaneously follow multiple lineages of clonally related bacteria in a bacteria colony would allow for mosaic analysis of gene function. We show that clonally related bacterium rods self-organize in a fractal growth pattern and can remain linked during colony development revealing a potential target against microbiota growth.
Collapse
Affiliation(s)
- Delia Tomoiaga
- Department of Biological Sciences, Hunter College, City University of New York, 904 North Building, 695 Park Avenue, New York, NY, 10065, USA
| | - Jaclyn Bubnell
- Department of Biological Sciences, Hunter College, City University of New York, 904 North Building, 695 Park Avenue, New York, NY, 10065, USA
| | - Liam Herndon
- Department of Biological Sciences, Hunter College, City University of New York, 904 North Building, 695 Park Avenue, New York, NY, 10065, USA
- Manhattan/Hunter Science High School, New York, NY, USA
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, 904 North Building, 695 Park Avenue, New York, NY, 10065, USA.
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs, City University of New York, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Ye Y, Zhong M, Zhang Z, Chen T, Shen Y, Lin Z, Wang Y. Genomic Iterative Replacements of Large Synthetic DNA Fragments in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:1588-1599. [PMID: 35290032 DOI: 10.1021/acssynbio.1c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic genomics will advance our understanding of life and allow us to rebuild the genomes of industrial microorganisms for enhancing performances. Corynebacterium glutamicum, a Gram-positive bacterium, is an important industrial workhorse. However, its genome synthesis is impeded by the low efficiencies in DNA delivery and in genomic recombination/replacement. In the present study, we describe a genomic iterative replacement system based on RecET recombination for C. glutamicum, involving the successive integration of up to 10 kb DNA fragments obtained in vitro, and the transformants are selected by the alternative use of kanR and speR selectable markers. As a proof of concept, we systematically redesigned and replaced a 54.3 kb wild-type sequence of C. glutamicumATCC13032 with its 55.1 kb synthetic counterpart with several novel features, including decoupled genes, the standard PCRTags, and 20 loxPsym sites, which was for the first time incorporated into a bacterial genome. The resulting strain semi-synCG-A1 had a phenotype and fitness similar to the wild-type strain under various stress conditions. The stability of the synthetic genome region faithfully maintained over 100 generations of nonselective growth. Genomic deletions, inversions, and translocations occurred in the synthetic genome region upon induction of synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE), revealing potential genetic flexibility for C. glutamicum. This strategy can be used for the synthesis of a larger region of the genome and facilitate the endeavors for metabolic engineering and synthetic biology of C. glutamicum.
Collapse
Affiliation(s)
- Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Minmin Zhong
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Tai Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
15
|
Li T, Gao L, Zhang B, Nie G, Xie Z, Zhang H, Ågren H. Material-based engineering of bacteria for cancer diagnosis and therapy. APPLIED MATERIALS TODAY 2021; 25:101212. [DOI: 10.1016/j.apmt.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Becce M, Klöckner A, Higgins SG, Penders J, Hachim D, Bashor CJ, Edwards AM, Stevens MM. Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli. J Mater Chem B 2021; 9:4906-4914. [PMID: 34100486 PMCID: PMC8221286 DOI: 10.1039/d0tb02762f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria-nanostructure interfacing experiments.
Collapse
Affiliation(s)
- Michele Becce
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Anna Klöckner
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| | - Stuart G. Higgins
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Jelle Penders
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Daniel Hachim
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Caleb J. Bashor
- Department of Bioengineering, Rice UniversityHoustonTexasUSA
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| | - Molly M. Stevens
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| |
Collapse
|
17
|
Inoue G, Toyohara D, Mori T, Muraoka T. Critical Side Chain Effects of Cell-Penetrating Peptides for Transporting Oligo Peptide Nucleic Acids in Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:3462-3468. [PMID: 35014430 DOI: 10.1021/acsabm.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Of various methods for delivering functional molecules into cells, a chemical approach using cell-penetrating peptides (CPPs) is facile and highly efficient. Currently, however, there are few examples of CPPs highly efficient with bacteria in contrast to CPPs targeting animal cells, and thus our understanding of the structural effects of these bacteria-efficient CPPs, termed as BCPPs, on permeation efficiency is limited. Herein, we report a comprehensive investigation on the permeation efficiencies of cationic short peptides through bacterial cell membranes. We observed that elongating the length of the main chain increased permeation efficiency. More interestingly, the length of the peptide side chain critically affected permeation efficiency; shortening the side chain significantly enhanced efficiency. Among the BCPPs investigated, 2,3-diaminopropionic acid nonamer showed the highest permeation efficiency into bacterial cells of diverse strains, allowing the transport of oligo peptide nucleic acids and subsequent growth inhibition. This study provides insights into the molecular design of efficient BCPPs for manipulating bacterial growth.
Collapse
Affiliation(s)
- Go Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daichi Toyohara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
18
|
Campo-Pérez V, Cendra MDM, Julián E, Torrents E. Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria. N Biotechnol 2021; 63:10-18. [PMID: 33636348 DOI: 10.1016/j.nbt.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Electroporation is the most widely used and efficient method to transform mycobacteria. Through this technique, fast- and slow-growing mycobacteria with smooth and rough morphotypes have been successfully transformed. However, transformation efficiencies differ widely between species and strains. In this study, the smooth and rough morphotypes of Mycobacteroides abscessus and Mycolicibacterium brumae were used to improve current electroporation procedures for fast-growing rough mycobacteria. The focus was on minimizing three well-known and challenging limitations: the mycobacterial restriction-modification systems, which degrade foreign DNA; clump formation of electrocompetent cells before electroporation; and electrical discharges during pulse delivery, which were reduced by using salt-free DNA solution. Herein, different strategies are presented that successfully address these three limitations and clearly improve the electroporation efficiencies over the current procedures. The results demonstrated that combining the developed strategies during electroporation is highly recommended for the transformation of fast-growing rough mycobacteria.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Esther Julián
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., Barcelona, 08028, Spain.
| |
Collapse
|
19
|
Ndawula C, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines (Basel) 2020; 8:E457. [PMID: 32824962 PMCID: PMC7564958 DOI: 10.3390/vaccines8030457] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22-30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.
Collapse
Affiliation(s)
- Charles Ndawula
- Vaccinology Research program, National Livestock Resources Research Institute, P O. Box 5746, Nakyesasa 256, Uganda
| | - Ala E. Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland Australia, St Lucia 4072, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
20
|
Wang Y, Wang X, Yu L, Tian Y, Li S, Leng F, Ma J, Chen J. Effects of Sr 2 + on the preparation of Escherchia coli DH5α competent cells and plasmid transformation. PeerJ 2020. [DOI: 10.7717/peerj.9480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial gene transformation used with Escherichia coli as a desired microorganism is one of the important techniques in genetic engineering. In this study, the preparation of E. coli DH5α competent cells treated with SrCl2 and transformation by heat-shock with pUC19 plasmid was optimized by Response Surface Methodology (RSM). Other five E. coli strains including BL21 (DE3), HB-101, JM109, TOP10 and TG1, three different sizes plasmids (pUC19, pET32a, pPIC9k) were used to verify the protocol, respectively. The transformation mechanism was explored by scanning electron microscope combined with energy dispersive spectrometer (SEM-EDS), atomic absorption spectroscopy (AAS) and Fourier-transform infrared spectroscopy (FT-IR). An equation of regression model was obtained, and the ideal parameters were Sr2 + ions of 90 mM, heat-shock time of 90 s and 9 ng of plasmid. Under this conditions, the transformation efficiency could almost reach to 106 CFU/µg DNA. A small change of the cell surface structure has been observed between E. coli DH5α strain and competent cells by abovementioned spectrum technologies, which implied that a strict regulation mechanism involved in the formation of competent cells and transformation of plasmids. An equation of regression model for the competent cells preparation and plasmid transformation could be applied in gene cloning technology
Collapse
Affiliation(s)
- Yonggang Wang
- School of Energy and Power Engineering, Lanzhou University of Technology, Lan Zhou, Gansu, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Xinjian Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Linmiao Yu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Yuan Tian
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Jixiang Chen
- School of Energy and Power Engineering, Lanzhou University of Technology, Lan Zhou, Gansu, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Ding T, Huang C, Liang Z, Ma X, Wang N, Huo YX. Reversed paired-gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli. Microb Cell Fact 2020; 19:63. [PMID: 32156270 PMCID: PMC7063769 DOI: 10.1186/s12934-020-01321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Co-expression of two distinct guide RNAs (gRNAs) has been used to facilitate the application of CRISPR/Cas9 system in fields such as large genomic deletion. The paired gRNAs are often placed adjacently in the same direction and expressed individually by two identical promoters, constituting direct repeats (DRs) which are susceptible to self-homologous recombination. As a result, the paired-gRNA plasmids cannot remain stable, which greatly prevents extensible applications of CRISPR/Cas9 system. RESULTS To address this limitation, different DRs-involved paired-gRNA plasmids were designed and the events of recombination were characterized. Deletion between DRs occurred with high frequencies during plasmid construction and subsequent plasmid propagation. This recombination event was RecA-independent, which agreed with the replication slippage model. To increase plasmid stability, a reversed paired-gRNA plasmids (RPGPs) cloning strategy was developed by converting DRs to the more stable invert repeats (IRs), which completely eliminated DRs-induced recombination. Using RPGPs, rapid deletion of chromosome fragments up to 100 kb with an efficiency of 83.33% was achieved in Escherichia coli. CONCLUSIONS The RPGPs cloning strategy serves as a general solution to avoid plasmid RecA-independent recombination. It can be adapted to applications that rely on paired gRNAs or repeated genetic parts.
Collapse
Affiliation(s)
- Tingting Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zeyu Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| |
Collapse
|
22
|
Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, Chisholm SW. Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol 2020; 2:acmi000107. [PMID: 33005871 PMCID: PMC7523629 DOI: 10.1099/acmi.0.000107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022] Open
Abstract
As the smallest and most abundant primary producer in the oceans, the cyanobacterium Prochlorococcus is of interest to diverse branches of science. For the past 30 years, research on this minimal phototroph has led to a growing understanding of biological organization across multiple scales, from the genome to the global ocean ecosystem. Progress in understanding drivers of its diversity and ecology, as well as molecular mechanisms underpinning its streamlined simplicity, has been hampered by the inability to manipulate these cells genetically. Multiple attempts have been made to develop an efficient genetic transformation method for Prochlorococcus over the years; all have been unsuccessful to date, despite some success with their close relative, Synechococcus. To avoid the pursuit of unproductive paths, we report here what has not worked in our hands, as well as our progress developing a method to screen the most efficient electroporation parameters for optimal DNA delivery into Prochlorococcus cells. We also report a novel protocol for obtaining axenic colonies and a new method for differentiating live and dead cells. The electroporation method can be used to optimize DNA delivery into any bacterium, making it a useful tool for advancing transformation systems in other genetically recalcitrant microorganisms.
Collapse
Affiliation(s)
- Raphaël Laurenceau
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bliem
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcia S Osburne
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Molecular Biology and Microbiology Tufts University School of Medicine, Boston, MA, USA
| | - Jamie W Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Biology, Haverford College, Haverford, PA, USA
| | - Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Andres Cubillos-Ruiz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Present address: Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Green MR, Sambrook J. Easy Transformation of Escherichia coli: Nanoparticle-Mediated Transformation. Cold Spring Harb Protoc 2019; 2019:2019/12/pdb.prot101204. [PMID: 31792143 DOI: 10.1101/pdb.prot101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this protocol, a colloidal solution containing mineral nanofibers is mixed with Escherichia coli and plasmid DNA and plated immediately on the appropriate selective plates. Sliding frictional forces, created when the bacteria are spread with a polystyrene stir stick across the surface of the agar, may result in penetration of the bacteria by the mineral fibers with its adherent cargo of DNA. The number of transformants increases during the first 60 sec of exposure to the mineral fiber:DNA complex and then reaches a plateau of ∼1 × 106 to 2 × 106 transformants/milligrams of DNA. Although not highly efficient, the method is very simple.
Collapse
|
24
|
Ren J, Karna S, Lee HM, Yoo SM, Na D. Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl Microbiol Biotechnol 2019; 103:9205-9215. [PMID: 31650193 DOI: 10.1007/s00253-019-10173-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/23/2023]
Abstract
The uptake of exogenous DNA materials through the cell membrane by bacteria, known as transformation, is essential for the genetic manipulation of bacteria and, thus, plays key roles in biotechnological and biological research. The efficiency of natural transformation is very low; therefore, various artificial transformation methods have been developed for simple and efficient bacterial transformation. The basic bacterial transformation method is based on chemical, physical, and electrical processes and other means to permeabilize the bacterial cell membrane to allow plasmid DNA uptake. With the introduction of novel chemicals, materials, and devices and the optimization of protocols, new transformation methods have become simpler, cheaper, and more reproducible for use in diverse bacterial species compared with conventional methods. In this review, artificial transformation methods have been classified according to the membrane-permeabilizing mechanisms employed by them. Their influential factors, transformation efficiency, advantages, disadvantages, and practical applications are briefly illustrated. Finally, physicochemical transformation as a new bacterial transformation technique has also been described.
Collapse
Affiliation(s)
- Jun Ren
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sandeep Karna
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyang-Mi Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
25
|
Islam MR, Ihenacho K, Park JW, Islam IS. Plasmid DNA nicking- a Novel Activity of Soybean Trypsin Inhibitor and Bovine Aprotinin. Sci Rep 2019; 9:11596. [PMID: 31406183 PMCID: PMC6690959 DOI: 10.1038/s41598-019-48068-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Protease inhibitors, such as trypsin inhibitor, serum alpha-1 antitrypsin, or liver aprotinin, are a class of proteins that competitively bind and block the catalytic activity of proteolytic enzymes with wide ranging biological functions. A significant number of protease inhibitors have also been shown to possess antimicrobial activity, presumed to contribute in defense against pathogenic microorganisms as plants with higher levels of protease inhibitors tend to exhibit increased resistance towards pathogens. Two proposed mechanisms for the antimicrobial activity are combating microbial proteases that play roles in disease development and disruption of microbial cell wall & membrane necessary for survival. Here we show for the first time a novel activity of soybean trypsin inhibitor and bovine aprotinin that they nick supercoiled, circular plasmid DNA. A number of experiments conducted to demonstrate the observed DNA nicking activity is inherent, rather than a co-purified, contaminating nuclease. The nicking of the plasmid results in markedly reduced efficiencies in transformation of E. coli and transfection of HEK293T cells. Thus, this work reveals yet a new mechanism for the antimicrobial activity by protease inhibitors.
Collapse
Affiliation(s)
- M Rafiq Islam
- Laboratory of Biochemistry, Northwest Missouri State University, 7314 N. Tullis Ave, Kansas City, Missouri, 64158, United States of America.
| | - Kelvin Ihenacho
- Laboratory of Biochemistry, Northwest Missouri State University, 7314 N. Tullis Ave, Kansas City, Missouri, 64158, United States of America
| | - Jae Whan Park
- Laboratory of Biochemistry, Northwest Missouri State University, 7314 N. Tullis Ave, Kansas City, Missouri, 64158, United States of America
| | - I Sakif Islam
- Laboratory of Biochemistry, Northwest Missouri State University, 7314 N. Tullis Ave, Kansas City, Missouri, 64158, United States of America
| |
Collapse
|
26
|
Islam MM, Odahara M, Yoshizumi T, Oikawa K, Kimura M, Su’etsugu M, Numata K. Cell-Penetrating Peptide-Mediated Transformation of Large Plasmid DNA into Escherichia coli. ACS Synth Biol 2019; 8:1215-1218. [PMID: 31008591 DOI: 10.1021/acssynbio.9b00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly efficient genetic transformation of cells is essential for synthetic biology procedures, especially for the transformation of large gene clusters. In this technical note, we present a novel cell-penetrating peptide (CPP)-mediated large-sized plasmid DNA transformation system for Escherichia coli. A large plasmid (pMSR227, 205 kb) was complexed with cationic peptides containing a CPP motif and was successfully transformed into E. coli cells. The transformants containing the plasmid DNA exhibited expression of a reporter gene encoding a red fluorescent protein. The transformation efficiency was significantly higher than that obtained using the heat-shock method and was similar to that of electroporation. This technique can be used as a platform for the simple and highly efficient transformation of large DNA molecules under mild conditions without causing significant damage to DNA, accelerating synthetic biology investigations for the design of genetically engineered microorganisms for industrial purposes.
Collapse
Affiliation(s)
- Md Monirul Islam
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaki Odahara
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takeshi Yoshizumi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mitsuhiro Kimura
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Nagamani G, Alex S, Soni KB, Anith KN, Viji MM, Kiran AG. A novel approach for increasing transformation efficiency in E. coli DH5α cells using silver nanoparticles. 3 Biotech 2019; 9:113. [PMID: 30863697 DOI: 10.1007/s13205-019-1640-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
The present study is the first report on the application of silver nanoparticles for efficient bacterial transformation. EC50 value of 100 nm silver nanoparticles against E. coli DH5α cells was recorded as 4.49 mg L-1 in toxicity assay. Competency induction in E. coli DH5α cells by treatment with 100 nm silver nanoparticles at a concentration of 1 mg L-1 for 60 min and transformation using three plasmid vectors of different sizes, viz. pUC18, pBR322 and pCAMBIA resulted in tenfold increase in the bacterial transformation efficiency, i.e. 8.3 × 104, 8.0 × 104 and 7.9 × 104 cfu ng-1 of DNA, respectively, even without heat shock compared to the conventional chemical method using 0.1 M calcium chloride (2.3 × 103 cfu ng-1 of DNA).
Collapse
Affiliation(s)
- Gorantla Nagamani
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - Swapna Alex
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - K B Soni
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - K N Anith
- Department of Agricultural Microbiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - M M Viji
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A G Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| |
Collapse
|
29
|
González-Tortuero E, Rodríguez-Beltrán J, Radek R, Blázquez J, Rodríguez-Rojas A. Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis. Sci Rep 2018; 8:8504. [PMID: 29855603 PMCID: PMC5981458 DOI: 10.1038/s41598-018-26958-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/23/2018] [Indexed: 11/09/2022] Open
Abstract
Natural clays and synthetic nanofibres can have a severe impact on human health. After several decades of research, the molecular mechanism of how asbestos induces cancer is not well understood. Different fibres, including asbestos, can penetrate cell membranes and introduce foreign DNA in bacterial and eukaryotic cells. Incubating Escherichia coli under friction forces with sepiolite, a clayey material, or with asbestos, causes double-strand DNA breaks. Antibiotics and clays are used together in animal husbandry, the mutagenic effect of these fibres could be a pathway to antibiotic resistance due to the friction provided by peristalsis of the gut from farm animals in addition to horizontal gene transfer. Moreover, we raise the possibility that the same mechanism could generate bacteria diversity in natural scenarios, playing a role in the evolution of species. Finally, we provide a new model on how asbestos may promote mutagenesis and cancer based on the observed mechanical genotoxicity.
Collapse
Affiliation(s)
- Enrique González-Tortuero
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany.,Berlin Centre for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 6-8, 14195, Berlin, Germany.,Institute for Genome Sciences, University of Maryland Baltimore School of Medicine, 670 West Baltimore Street, 21201, Baltimore, MD, USA
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology, Calle Darwin 3, 28049, Madrid, Spain
| | - Renate Radek
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology, Calle Darwin 3, 28049, Madrid, Spain
| | | |
Collapse
|
30
|
Piétrement O, Castro-Smirnov FA, Le Cam E, Aranda P, Ruiz-Hitzky E, Lopez BS. Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. CHEM REC 2017; 18:849-857. [DOI: 10.1002/tcr.201700078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Olivier Piétrement
- CNRS UMR 8126; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 Rue Edouard Vaillant 94805 Villejuif France
| | - Fidel Antonio Castro-Smirnov
- CNRS UMR 8200, team labeled “Ligue 2014”; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 rue Edouard Vaillant 94805 Villejuif France
- Universidad de las Ciencias Informáticas; Carretera a San Antonio de los Baños, km 2 1/2 La Habana 19370 Cuba
| | - Eric Le Cam
- CNRS UMR 8126; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 Rue Edouard Vaillant 94805 Villejuif France
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC; c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC; c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Bernard S. Lopez
- CNRS UMR 8200, team labeled “Ligue 2014”; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 rue Edouard Vaillant 94805 Villejuif France
| |
Collapse
|
31
|
Asif A, Mohsin H, Tanvir R, Rehman Y. Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. Front Microbiol 2017; 8:2169. [PMID: 29163447 PMCID: PMC5681917 DOI: 10.3389/fmicb.2017.02169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Azka Asif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Hareem Mohsin
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Rabia Tanvir
- University Diagnostic Lab, Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Tee KL, Grinham J, Othusitse AM, González-Villanueva M, Johnson AO, Wong TS. An Efficient Transformation Method for the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha
H16. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Kang Lan Tee
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - James Grinham
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Arona M. Othusitse
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Miriam González-Villanueva
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Abayomi O. Johnson
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| | - Tuck Seng Wong
- Department of Chemical and Biological Engineering, ChELSI Institute and Advanced Biomanufacturing Centre; The University of Sheffield; Sheffield United Kingdom
| |
Collapse
|
33
|
Castro-Smirnov FA, Ayache J, Bertrand JR, Dardillac E, Le Cam E, Piétrement O, Aranda P, Ruiz-Hitzky E, Lopez BS. Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Sci Rep 2017; 7:5586. [PMID: 28717157 PMCID: PMC5514060 DOI: 10.1038/s41598-017-05839-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022] Open
Abstract
Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier because it can be naturally internalized into mammalian cells, due to its nano-size dimension. Therefore, deciphering the mechanisms of sepiolite cell internalization constitutes a question interesting biotechnology, for the use of sepiolite as nanocarrier, as well as environmental and public health concerns. Though it is low, the perfectly stable and natural intrinsic fluorescence of sepiolite nanofibers allows to follow their fate into cells by specifically sensitive technics. By combining fluorescence microscopy (including confocal analysis), time-lapse video microscopy, fluorescence activated cell sorting and transmission electron microscopy, we show that sepiolite can be spontaneously internalized into mammalian cells through both non-endocytic and endocytic pathways, macropinocytosis being one of the main pathways. Interestingly, exposure of the cells to endocytosis inhibitors, such as chloroquine, two-fold increase the efficiency of sepiolite-mediated gene transfer, in addition to the 100-fold increased resulting from sepiolite sonomechanical treatment. As sepiolite is able to bind various biological molecules, this nanoparticulate silicate could be a good candidate as a nanocarrier for simultaneous vectorization of diverse biological molecules.
Collapse
Affiliation(s)
- Fidel Antonio Castro-Smirnov
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France.,Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 1⁄2, La Habana, 19370, Cuba
| | - Jeanne Ayache
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Jean-Rémi Bertrand
- Vectorology and Anticancer therapies, CNRS UMR 8203, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Eric Le Cam
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Olivier Piétrement
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Bernard S Lopez
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
34
|
Kumari M, Pandey S, Mishra A, Nautiyal CS. Finding a facile way for the bacterial DNA transformation by biosynthesized gold nanoparticles. FEMS Microbiol Lett 2017; 364:3894107. [DOI: 10.1093/femsle/fnx081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023] Open
|
35
|
|
36
|
Ren J, Lee H, Yoo SM, Yu MS, Park H, Na D. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species. J Microbiol Methods 2017; 135:48-51. [DOI: 10.1016/j.mimet.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
|
37
|
Ruiz-Hitzky E, Darder M, Alcântara ACS, Wicklein B, Aranda P. Functional Nanocomposites Based on Fibrous Clays. FUNCTIONAL POLYMER COMPOSITES WITH NANOCLAYS 2016. [DOI: 10.1039/9781782626725-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter is focused on functional nanocomposites based on the use of the microfibrous clays sepiolite and palygorskite as efficient fillers for diverse types of polymer matrices, from typical thermoplastics to biopolymers. The main features that govern the interaction between the silicates and the polymer matrix are discussed. The introduction addresses the structural and textural features of the fibrous silicates, as well as the possible synthetic approaches to increase the compatibility of these nanofillers with the polymeric matrix. Additionally, these clays can be easily functionalized through their surface silanol groups based on chemical reactions or by anchoring of nanoparticles. This allows for the preparation of a wide variety of functional polymer–clay nanocomposites. Thereafter, some relevant examples of nanocomposites derived from conventional polymers are reported, as well as of those based on polymers that exhibit electrical conductivity. Lastly, selected works employing sepiolite or palygorskite as fillers in polymeric matrixes of natural origin are discussed, showing the wide application of these resulting nanocomposites as bioplastics, as well as in biomedicine, environmental remediation and the development of sensor devices.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Ana C. S. Alcântara
- Universidade Federal do Maranhão (UFMA), Departamento de Química (DEQUI) São Luís-MA Brazil
| | - Bernd Wicklein
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid CSIC, c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| |
Collapse
|
38
|
Brito LF, Irla M, Walter T, Wendisch VF. Magnesium aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Appl Microbiol Biotechnol 2016; 101:735-747. [DOI: 10.1007/s00253-016-7999-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/30/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
|
39
|
Winstel V, Kühner P, Rohde H, Peschel A. Genetic engineering of untransformable coagulase-negative staphylococcal pathogens. Nat Protoc 2016; 11:949-59. [DOI: 10.1038/nprot.2016.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep 2016; 6:24648. [PMID: 27095488 PMCID: PMC4837392 DOI: 10.1038/srep24648] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/04/2016] [Indexed: 01/20/2023] Open
Abstract
Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.
Collapse
|
41
|
Ding C, Pan J, Jin M, Yang D, Shen Z, Wang J, Zhang B, Liu W, Fu J, Guo X, Wang D, Chen Z, Yin J, Qiu Z, Li J. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology 2016; 10:1051-60. [DOI: 10.3109/17435390.2016.1161856] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Chengshi Ding
- College of Life Science, Shandong Normal University, Jinan, China
- College of Life Science, Zaozhuang University, Zaozhuang, China
| | - Jie Pan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Min Jin
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Dong Yang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhiqiang Shen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Jingfeng Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Bin Zhang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Weili Liu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Jialun Fu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xuan Guo
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Daning Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Jing Yin
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhigang Qiu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Junwen Li
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| |
Collapse
|
42
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
43
|
Mendes G, Vieira P, Lanceros-Méndez S, Kluskens L, Mota M. Transformation of Escherichia coli JM109 using pUC19 by the Yoshida effect. J Microbiol Methods 2015; 115:1-5. [DOI: 10.1016/j.mimet.2015.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
|
44
|
Abstract
The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.
Collapse
|
45
|
Kananavičiūtė R, Čitavičius D. Genetic engineering of Geobacillus spp. J Microbiol Methods 2015; 111:31-9. [DOI: 10.1016/j.mimet.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
|
46
|
Mitsudome Y, Takahama M, Hirose J, Yoshida N. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes. AMB Express 2014; 4:70. [PMID: 25401071 PMCID: PMC4230895 DOI: 10.1186/s13568-014-0070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/15/2014] [Indexed: 11/15/2022] Open
Abstract
Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA.
Collapse
|
47
|
Kim S, Lee YC, Cho DH, Lee HU, Huh YS, Kim GJ, Kim HS. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS One 2014; 9:e101018. [PMID: 24988123 PMCID: PMC4079685 DOI: 10.1371/journal.pone.0101018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/02/2014] [Indexed: 12/04/2022] Open
Abstract
Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH2)3]8Si8Mg6O12(OH)4), for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×102 transformants/µg DNA), second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.
Collapse
Affiliation(s)
- Sora Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
- * E-mail: (YCL); (HSK)
| | - Dae-Hyun Cho
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyun Uk Lee
- Division of Materials Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwang-ju, Republic of Korea
| | - Hee-Sik Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- * E-mail: (YCL); (HSK)
| |
Collapse
|
48
|
Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 2014; 11:184-203. [DOI: 10.1016/j.plrev.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
49
|
Affiliation(s)
- Julian Davies
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
50
|
Belosludtsev KN, Belosludtseva NV, Kondratyev MS, Agafonov AV, Purtov YA. Interaction of phospholipase A of the E. coli outer membrane with the inhibitors of eucaryotic phospholipases A₂ and their effect on the Ca²⁺-induced permeabilization of the bacterial membrane. J Membr Biol 2014; 247:281-288. [PMID: 24477786 DOI: 10.1007/s00232-014-9633-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/13/2014] [Indexed: 02/03/2023]
Abstract
Phospholipase A of the bacterial outer membrane (OMPLA) is a β-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A₂--palmitoyl trifluoromethyl ketone (PACOCF₃) and aristolochic acid (AA)--with OMPLA and considers a possible involvement of the enzyme in the Ca²⁺-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF₃ and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF₃, AA, and bromophenacyl bromide inhibit the Ca²⁺-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca²⁺ and heat shock. The cell viability was not affected by the eucaryotic phospholipases A₂ inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya, 3, Pushchino, Moscow Region, 142290, Russia,
| | | | | | | | | |
Collapse
|