1
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
2
|
Suzuki H, Abe T, Doi K, Ohshima T. Azoreductase from alkaliphilic Bacillus sp. AO1 catalyzes indigo reduction. Appl Microbiol Biotechnol 2018; 102:9171-9181. [PMID: 30105570 DOI: 10.1007/s00253-018-9284-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Indigo is an insoluble blue dye historically used for dyeing textiles. A traditional approach for indigo dyeing involves microbial reduction of polygonum indigo to solubilize it under alkaline conditions; however, the mechanism by which microorganisms reduce indigo remains poorly understood. Here, we aimed to identify an enzyme that catalyzes indigo reduction; for this purpose, from alkaline liquor that performed microbial reduction of polygonum indigo, we isolated indigo carmine-reducing microorganisms. All isolates were facultative anaerobic and alkali-tolerant Bacillus spp. An isolate termed AO1 was found to be an alkaliphile that preferentially grows at pH 9.0-11.0 and at 30-35 °C. We focused on flavin-dependent azoreductase as a possible enzyme for indigo carmine reduction and identified its gene (azoA) in Bacillus sp. AO1 using homology-based strategies. azoA was monocistronic but clustered with ABC transporter genes. Primary sequence identities were < 50% between the azoA product (AzoA) and previously characterized flavin-dependent azoreductases. AzoA was heterologously produced as a flavoprotein tolerant to alkaline and organic solvents. The enzyme efficiently reduced indigo carmine in an NADH-dependent manner and showed strict specificity for electron acceptors. Notably, AzoA oxidized NADH in the presence, but not the absence, of indigo. The reaction rate was enhanced by adding organic solvents to solubilize indigo. Absorption spectrum analysis showed that indigo absorption decreased during the reaction. These observations suggest that AzoA can reduce indigo in vitro and potentially in Bacillus sp. AO1. This is the first study that identified an indigo reductase, providing a new insight into a traditional approach for indigo dyeing.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan. .,Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan.
| | - Tomoaki Abe
- Microbial Genetic Division, Institute of Genetic Resources, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, 812-8581, Japan
| | - Katsumi Doi
- Microbial Genetic Division, Institute of Genetic Resources, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, 812-8581, Japan
| | - Toshihisa Ohshima
- Microbial Genetic Division, Institute of Genetic Resources, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, 812-8581, Japan.,Faculty of Engineering, Osaka Institute of Technology, Osaka, 535-8585, Japan
| |
Collapse
|
3
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
4
|
|
5
|
Nanoparticle-tethered NAD(+) with in situ cofactor regeneration. Biotechnol Lett 2013; 35:915-9. [PMID: 23417259 DOI: 10.1007/s10529-013-1156-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
A new and simple route for the preparation of immobilized NAD(+) on carboxyl-activated silica nanoparticles activated by γ-aminpropyltriethoxysilane and glutaric anhydride was developed. In addition, formate dehydrogenase, keto-reductase and the silica nanoparticle-attached NAD(+) were applied to catalyze the coupled reactions for production of L-lactate with the cofactor regenerated within the reaction cycle. As indicated by thermogravimetric analysis and FT-IR, the silica nanoparticles were successfully activated and the loading of carboxyl groups was 0.53 mmol g(-1) particle. The amount of immobilized NAD(+) on the support was 73 mg g(-1) particle. With 0.2 M pyruvate and 3 M formate, 0.16 M L-lactate was produced after the coupled reactions. The immobilized system showed excellent efficiency and stabilities in recycling, and it retained 60 % residual activity even after six reuses.
Collapse
|
6
|
Oxidative Decarboxylation of L-Malate by Using a Synthetic Bioredox System. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.3724/sp.j.1088.2012.10938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Kolekar YM, Konde PD, Markad VL, Kulkarni SV, Chaudhari AU, Kodam KM. Effective bioremoval and detoxification of textile dye mixture by Alishewanella sp. KMK6. Appl Microbiol Biotechnol 2012; 97:881-9. [DOI: 10.1007/s00253-012-3983-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
9
|
You C, Zhang YHP. Cell-free biosystems for biomanufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:89-119. [PMID: 23111502 DOI: 10.1007/10_2012_159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although cell-free biosystems have been used as a tool for investigating fundamental aspects of biological systems for more than 100 years, they are becoming an emerging biomanufacturing platform in the production of low-value biocommodities (e.g., H(2), ethanol, and isobutanol), fine chemicals, and high-value protein and carbohydrate drugs and their precursors. Here we would like to define the cell-free biosystems containing more than three catalytic components in a single reaction vessel, which although different from one-, two-, or three-enzyme biocatalysis can be regarded as a straightforward extension of multienzymatic biocatalysis. In this chapter, we compare the advantages and disadvantages of cell-free biosystems versus living organisms, briefly review the history of cell-free biosystems, highlight a few examples, analyze any remaining obstacles to the scale-up of cell-free biosystems, and suggest potential solutions. Cell-free biosystems could become a disruptive technology to microbial fermentation, especially in the production of high-impact low-value biocommodities mainly due to the very high product yields and potentially low production costs.
Collapse
Affiliation(s)
- Chun You
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
| | | |
Collapse
|
10
|
Zhang YHP. Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB). ACS Catal 2011. [DOI: 10.1021/cs200218f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y.-H. Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 210-A Seitz Hall, Blacksburg, Virginia 24061, United States
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Virginia 24061, United States
- DOE Bioenergy Science Center, Oak Ridge, Tennessee 37831, United States
- Gate Fuels Inc., 3107 Alice Dr., Blacksburg, Virginia 24060, United States
| |
Collapse
|
11
|
Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. ACTA ACUST UNITED AC 2011; 18:372-80. [PMID: 21439482 DOI: 10.1016/j.chembiol.2010.12.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 11/22/2022]
Abstract
Different from NAD(P)H regeneration approaches mediated by a single enzyme or a whole-cell microorganism, we demonstrate high-yield generation of NAD(P)H from a renewable biomass sugar--cellobiose through in vitro synthetic enzymatic pathways consisting of 12 purified enzymes and coenzymes. When the NAD(P)H generation system was coupled with its consumption reaction mediated by xylose reductase, the NADPH yield was as high as 11.4 mol NADPH per cellobiose (i.e., 95% of theoretical yield--12 NADPH per glucose unit) in a batch reaction. Consolidation of endothermic reactions and exothermic reactions in one pot results in a very high energy-retaining efficiency of 99.6% from xylose and cellobiose to xylitol. The combination of this high-yield and projected low-cost biohydrogenation and aqueous phase reforming may be important for the production of sulfur-free liquid jet fuel in the future.
Collapse
|
12
|
Zhang YHP, Myung S, You C, Zhu Z, Rollin JA. Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12078f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Görner H. Reduction of 4,4′-Stilbenequinone and 4,4′-Diphenoquinone upon Reaction with Photogenerated Radicals. Photochem Photobiol 2010; 86:1202-7. [DOI: 10.1111/j.1751-1097.2010.00798.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|