1
|
Jiang W, Fu X, Wu W. Gene mining, codon optimization and analysis of binding mechanism of an aldo-keto reductase with high activity, better substrate specificity and excellent solvent tolerance. PLoS One 2021; 16:e0260787. [PMID: 34855894 PMCID: PMC8638942 DOI: 10.1371/journal.pone.0260787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
The biosynthesis of chiral alcohols has important value and high attention. Aldo–keto reductases (AKRs) mediated reduction of prochiral carbonyl compounds is an interesting way of synthesizing single enantiomers of chiral alcohols due to the high enantio-, chemo- and regioselectivity of the enzymes. However, relatively little research has been done on characterization and apply of AKRs to asymmetric synthesis of chiral alcohols. In this study, the AKR from Candida tropicalis MYA-3404 (C. tropicalis MYA-3404), was mined and characterized. The AKR shown wider optimum temperature and pH. The AKR exhibited varying degrees of catalytic activity for different substrates, suggesting that the AKR can catalyze a variety of substrates. It is worth mentioning that the AKR could catalytic reduction of keto compounds with benzene rings, such as cetophenone and phenoxyacetone. The AKR exhibited activity on N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP), a key intermediate for biosynthesis of the antidepressant drug duloxetine. Besides, the AKR still has high activity whether in a reaction system containing 10%-30% V/V organic solvent. What’s more, the AKR showed the strongest stability in six common organic solvents, DMSO, acetonitrile, ethyl acetate, isopropanol, ethanol, and methanol. And, it retains more that 70% enzyme activity after 6 hours, suggesting that the AKR has strong solvent tolerance. Furthermore, the protein sequences of the AKR and its homology were compared, and a 3D model of the AKR docking with coenzyme NADPH were constructed. And the important catalytic and binding sites were identified to explore the binding mechanism of the enzyme and its coenzyme. These properties, predominant organic solvents resistance and extensive substrate spectrum, of the AKR making it has potential applications in the pharmaceutical field.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- * E-mail: ,
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Weiliang Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
2
|
Foo JL, Rasouliha BH, Susanto AV, Leong SSJ, Chang MW. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:585935. [PMID: 33123518 PMCID: PMC7573125 DOI: 10.3389/fbioe.2020.585935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Aldehydes are a class of highly versatile chemicals that can undergo a wide range of chemical reactions and are in high demand as starting materials for chemical manufacturing. Biologically, fatty aldehydes can be produced from fatty acyl-CoA by the action of fatty acyl-CoA reductases. The aldehydes produced can be further converted enzymatically to other valuable derivatives. Thus, metabolic engineering of microorganisms for biosynthesizing aldehydes and their derivatives could provide an economical and sustainable platform for key aldehyde precursor production and subsequent conversion to various value-added chemicals. Saccharomyces cerevisiae is an excellent host for this purpose because it is a robust organism that has been used extensively for industrial biochemical production. However, fatty acyl-CoA-dependent aldehyde-forming enzymes expressed in S. cerevisiae thus far have extremely low activities, hence limiting direct utilization of fatty acyl-CoA as substrate for aldehyde biosynthesis. Toward overcoming this challenge, we successfully engineered an alcohol-forming fatty acyl-CoA reductase for aldehyde production through rational design. We further improved aldehyde production through strain engineering by deleting competing pathways and increasing substrate availability. Subsequently, we demonstrated alkane and alkene production as one of the many possible applications of the aldehyde-producing strain. Overall, by protein engineering of a fatty acyl-CoA reductase to alter its activity and metabolic engineering of S. cerevisiae, we generated strains with the highest reported cytosolic aliphatic aldehyde and alkane/alkene production to date in S. cerevisiae from fatty acyl-CoA.
Collapse
Affiliation(s)
- Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Bahareh Haji Rasouliha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Adelia Vicanatalita Susanto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Susanna Su Jan Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Singapore Institute of Technology, Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Pei R, Wu W, Zhang Y, Tian L, Jiang W, Zhou SF. Characterization and Catalytic-Site-Analysis of an Aldo-Keto Reductase with Excellent Solvent Tolerance. Catalysts 2020; 10:1121. [DOI: 10.3390/catal10101121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aldo-keto reductases (AKRs) mediated stereoselective reduction of prochiral carbonyl compounds is an efficient way of preparing single enantiomers of chiral alcohols due to their high chemo-, enantio-, and regio-selectivity. To date, the application of AKRs in the asymmetric synthesis of chiral alcohols has been limited, due to the challenges of cloning and purifying. In this work, the aldo-keto reductase (AKR3-2-9) from Bacillus sp. was obtained, purified and proved to be NADPH-dependent. It exhibits good bioactivity and stability at 37 °C, pH 6.0. AKR3-2-9 is catalytically active on 11 pairs of substrates such as 3-methylcyclohexanone and methyl pyruvate, among which it showed the highest catalytic activity for acetylacetone. In addition, AKR3-2-9 was able to be resistant to five common organic solvents such as methanol and ethanol, it retained high catalytic activity even in a reaction system containing 10% v/v organic solvent for 6 h, which indicates its broad substrate spectrum and exceptional organic solvent tolerance. Furthermore, its three-dimensional structure was constructed and catalytic-site-analysis of the enzyme was conducted. Notably, it was capable of catalyzing the reaction of the key intermediates of duloxetine. The extensive substrate spectrum and predominant organic solvents resistance makes AK3-2-9 a promising enzyme which can be potentially applied in medicine synthesis.
Collapse
Affiliation(s)
- Rui Pei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| | - Weiliang Wu
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| | - Yuqian Zhang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| | - Libing Tian
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen 361021, China
| |
Collapse
|
4
|
Zong C, Zhang X, Yang F, Zhou Y, Chen N, Yang Z, Ding G, Yu F, Tang Y. Biotransformation of a crizotinib intermediate using a mutant alcohol dehydrogenase of Lactobacillus kefir coupled with glucose dehydrogenase. Prep Biochem Biotechnol 2019; 49:578-583. [PMID: 30957714 DOI: 10.1080/10826068.2019.1591987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(S)-1-(2, 6-dichloro-3-fluorophenyl) ethanol, the key chiral intermediate of crizotinib, was prepared from 1-(2, 6-dichloro-3-fluorophenyl) ethanone using the alcohol dehydrogenases from Lactobacillus kefir (ADH-LK) with a tetrad mutant (ADH-LKM, F147L/Y190P/V196L/A202W), coupled with glucose dehydrogenase (GDH). In the present study, ADH-LKM and GDH were successfully heterologous expressed in recombinant Escherichia coli. During the regeneration of NADPH with GDH, 150 g/L substrate was totally transformed into target chiral alcohol with an enantiomeric excess value of 99.9% after 12 h at 30 °C (pH 7.0). Our study demonstrates the potential for industrial green production of the key chiral intermediate of crizotinib.
Collapse
Affiliation(s)
- Chuhong Zong
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Xu Zhang
- b Microbiology Institute of Shaanxi Shaanxi Academy of Sciences , Xi'an , China
| | - Fei Yang
- c Hangzhou Obstetrics and Gynecology Hospital , Hangzhou , China
| | - Yafeng Zhou
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Nan Chen
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Zuisu Yang
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Guofang Ding
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Fangmiao Yu
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| | - Yunping Tang
- a Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products School of Food and Pharmacy , Zhejiang Ocean University , Zhoushan , China
| |
Collapse
|
5
|
Tang Y, Zhang G, Wang Z, Liu D, Zhang L, Zhou Y, Huang J, Yu F, Yang Z, Ding G. Efficient synthesis of a (S)-fluoxetine intermediate using carbonyl reductase coupled with glucose dehydrogenase. BIORESOURCE TECHNOLOGY 2018; 250:457-463. [PMID: 29197272 DOI: 10.1016/j.biortech.2017.10.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
(S)-3-chloro-1-phenyl-1-propanol ((S)-CPPO) is an important chiral intermediate predominantly used in the synthesis of the chiral side chain of (S)-fluoxetine. In this study, carbonyl reductase (CBR) from Novosphingobium aromaticivorans was successfully expressed in recombinant E. coli. The enzymatic activity of the recombinant CBR was significantly increased to 1875 U/mL in the fed-batch fermentation in a 10 L fermenter and recombinant CBR was then purified and characterized. By regenerating NADH with glucose dehydrogenase, 100 g/L 3-chloro-1-phenyl-1-propanone (3-CPP) was successfully converted to (S)-CPPO with a conversion of 100% and ee value of 99.6% after 12 h at 30 °C in PBS buffer (pH 7.0), which are the highest reported to date for the bio-production of (S)-CPPO and presented great potential for green production of (S)-CPPO at industrial scale.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guomei Zhang
- Institute of Health Food of Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Zheng Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dan Liu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Linglu Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Rational design of Kluyveromyces marxianus ZJB14056 aldo–keto reductase Km AKR to enhance diastereoselectivity and activity. Enzyme Microb Technol 2017; 107:32-40. [DOI: 10.1016/j.enzmictec.2017.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 11/21/2022]
|
7
|
Tian Y, Ma X, Yang M, Wei D, Su E. Synthesis of (S)-3-chloro-1-phenylpropanol by permeabilized recombinant Escherichia coli harboring Saccharomyces cerevisiae YOL151W reductase in 2-methyltetrahydrofuran cosolvent system. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Wang YJ, Liu XQ, Luo X, Liu ZQ, Zheng YG. Cloning, expression and enzymatic characterization of an aldo-keto reductase from Candida albicans XP1463. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Deng J, Chen K, Yao Z, Lin J, Wei D. Efficient synthesis of optically active halogenated aryl alcohols at high substrate load using a recombinant carbonyl reductase from Gluconobacter oxydans. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Luo X, Wang YJ, Zheng YG. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461. Enzyme Microb Technol 2015; 77:68-77. [PMID: 26138402 DOI: 10.1016/j.enzmictec.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis-Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg(-1), 0.204 mM, 4.42 mM and 697.4 min(-1), respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.
Collapse
Affiliation(s)
- Xi Luo
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
11
|
Akita H, Watanabe M, Suzuki T, Nakashima N, Hoshino T. Characterization of the Kluyveromyces marxianus strain DMB1 YGL157w gene product as a broad specificity NADPH-dependent aldehyde reductase. AMB Express 2015; 5:17. [PMID: 25852994 PMCID: PMC4385108 DOI: 10.1186/s13568-015-0104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
The open reading frame YGL157w in the genome of the yeast Kluyveromyces marxianus strain DMB1 encodes a putative uncharacterized oxidoreductase. However, this protein shows 46% identity with the Saccharomyces cerevisiae S288c NADPH-dependent methylglyoxal reductase, which exhibits broad substrate specificity for aldehydes. In the present study, the YGL157w gene product (KmGRE2) was purified to homogeneity from overexpressing Escherichia coli cells and found to be a monomer. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (branched-chain and linear) and aromatic aldehydes. The optimal pH for methylglyoxal reduction was 5.5. With methylglyoxal as a substrate, the optimal temperature for enzyme activity at pH 5.5 was 45°C. The enzyme retained more than 70% of its activity after incubation for 30 min at temperatures below 35°C or at pHs between 5.5 and 9.0. In addition, the KmGRE2-overexpressing E. coli showed improved growth when cultivated in cedar hydrolysate, as compared to cells not expressing the enzyme. Taken together, these results indicate that KmGRE2 is potentially useful as an inhibit decomposer in E. coli cells.
Collapse
|
12
|
Guo PC, Bao ZZ, Ma XX, Xia Q, Li WF. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1486-92. [PMID: 24879127 DOI: 10.1016/j.bbapap.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae Gre2 (EC1.1.1.283) serves as a versatile enzyme that catalyzes the stereoselective reduction of a broad range of substrates including aliphatic and aromatic ketones, diketones, as well as aldehydes, using NADPH as the cofactor. Here we present the crystal structures of Gre2 from S. cerevisiae in an apo-form at 2.00Å and NADPH-complexed form at 2.40Å resolution. Gre2 forms a homodimer, each subunit of which contains an N-terminal Rossmann-fold domain and a variable C-terminal domain, which participates in substrate recognition. The induced fit upon binding to the cofactor NADPH makes the two domains shift toward each other, producing an interdomain cleft that better fits the substrate. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis enabled us to define a potential substrate-binding pocket that determines the stringent substrate stereoselectivity for catalysis.
Collapse
Affiliation(s)
- Peng-Chao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, People's Republic of China; Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zhang-Zhi Bao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Xiao-Xiao Ma
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, People's Republic of China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
13
|
Coronel C, Arce G, Iglesias C, Noguera CM, Bonnecarrère PR, Giordano SR, Gonzalez D. Chemoenzymatic synthesis of fluoxetine precursors. Reduction of β-substituted propiophenones. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Saravanan T, Selvakumar R, Doble M, Chadha A. Stereochemical preference of Candida parapsilosis ATCC 7330 mediated deracemization: E- versus Z-aryl secondary alcohols. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Ma H, Yang L, Ni Y, Zhang J, Li CX, Zheng GW, Yang H, Xu JH. Stereospecific Reduction of Methyl o-Chlorobenzoylformate at 300 g⋅L−1 without Additional Cofactor using a Carbonyl Reductase Mined from Candida glabrata. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100366] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Zheng RC, Ge Z, Qiu ZK, Wang YS, Zheng YG. Asymmetric synthesis of (R)-1,3-butanediol from 4-hydroxy-2-butanone by a newly isolated strain Candida krusei ZJB-09162. Appl Microbiol Biotechnol 2012; 94:969-76. [PMID: 22361860 DOI: 10.1007/s00253-012-3942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/27/2022]
Abstract
Biocatalytic asymmetric preparation of (R)-1,3-butanediol has been attracting much attention in pharmaceuticals industry. A new ideal strain, ZJB-09162, which exhibited high reduction activity and excellent (R)-stereospecificity towards 4-hydroxy-2-butanone, has been successfully isolated from soil samples. Based on morphology, physiological tests (API 20 C AUX), and 5.8S-ITS sequence, the isolate was identified as Candida krusei. Kinetic characterization demonstrated that carbonyl reductase from C. krusei ZJB-09162 preferred NADH to NADPH as cofactor, indicating it might be a new carbonyl reductase. (R)-1,3-Butanediol was produced in 19.8 g/L, 96.6% conversion, and 99.0% ee at optimal pH 8.5, 35 °C with a 2:1 molar ratio of glucose to 4H2B. In order to achieve higher product titer, the substrate loading was optimized in fixed catalysts and fixed substrate/catalysts ratio mode. The bioreduction of 4-hydroxy-2-butanone at a concentration of 45.0 g/L gave (R)-1,3-butanediol in 38.7 g/L and 83.9% conversion. Therefore, C. krusei ZJB-09162 was, for the first time, proven to be a promising biocatalyst for enzymatic preparation of (R)-1,3-butanediol.
Collapse
Affiliation(s)
- Ren-Chao Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
20
|
Breicha K, Müller M, Hummel W, Niefind K. Crystallization and preliminary crystallographic analysis of Gre2p, an NADP(+)-dependent alcohol dehydrogenase from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:838-41. [PMID: 20606287 PMCID: PMC2898475 DOI: 10.1107/s1744309110018889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/20/2010] [Indexed: 11/10/2022]
Abstract
Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1 kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP(+). Crystals of a Gre2p complex with NADP(+) were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P2(1). The current diffraction resolution is 3.2 A. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis.
Collapse
Affiliation(s)
- Klaus Breicha
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | - Marion Müller
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf im Forschungszentrum Jülich, D-52426 Jülich, Germany
| | - Werner Hummel
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf im Forschungszentrum Jülich, D-52426 Jülich, Germany
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| |
Collapse
|
21
|
Jung J, Park HJ, Uhm KN, Kim D, Kim HK. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1841-9. [PMID: 20601218 DOI: 10.1016/j.bbapap.2010.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/05/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.
Collapse
Affiliation(s)
- Jihye Jung
- Division of Biotechnology, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | | | | | | | | |
Collapse
|