1
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
2
|
Argiz L, Correa-Galeote D, Val Del Río Á, Mosquera-Corral A, González-Cabaleiro R. Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150761. [PMID: 34624285 DOI: 10.1016/j.scitotenv.2021.150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The lipid fraction of the effluents generated in several food-processing activities can be transformed into polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs), through open culture biotechnologies. Although competition between storing and non-storing populations in mixed microbial cultures (MMCs) has been widely studied, the right selective environment allowing for the robust enrichment of a community when different types of accumulators coexist is still not clear. In this research, comprehensive metabolic analyses of PHA and TAG synthesis and degradation, and concomitant respiration of external carbon, were used to understand and explain the changes observed in a laboratory-scale bioreactor fed with the lipid-rich fraction (mainly oleic acid) of a wastewater stream produced in the fish-canning industry. It was concluded that the mode of oxygen, carbon, and nitrogen supply determines the enrichment of the culture in specific populations, and hence the type of intracellular compounds preferentially accumulated. Coupled carbon and nitrogen feeding regime mainly selects for TAG producers whereas uncoupled feeding leads to PHA or TAG production function of the rate of carbon supply under specific aeration rates and feast and famine phases lengths.
Collapse
Affiliation(s)
- Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - David Correa-Galeote
- Department of Microbiology and Institute of Water Research, Universidad de Granada, Granada, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Rebeca González-Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
3
|
Loza A, García-Guevara F, Segovia L, Escobar-Zepeda A, Sanchez-Olmos MDC, Merino E, Sanchez-Flores A, Pardo-Lopez L, Juarez K, Gutierrez-Rios RM. Definition of the Metagenomic Profile of Ocean Water Samples From the Gulf of Mexico Based on Comparison With Reference Samples From Sites Worldwide. Front Microbiol 2022; 12:781497. [PMID: 35178038 PMCID: PMC8846951 DOI: 10.3389/fmicb.2021.781497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.
Collapse
|
4
|
Calm and Frenzy: marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Curr Opin Biotechnol 2021; 73:337-345. [PMID: 34768202 DOI: 10.1016/j.copbio.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
According to current estimates, the annual volume of crude oil entering the ocean due to both anthropogenic activities and naturally occurring seepages reaches approximately 8.3 million metric tons. Huge discharges from accidents have caused large-scale environmental disasters with extensive damage to the marine ecosystem. The natural clean-up of petroleum spills in marine environments is carried out primarily by naturally occurring obligate hydrocarbonoclastic bacteria (OHCB). The natural hosts of OHCB include a range of marine primary producers, unicellular photosynthetic eukaryotes and cyanobacteria, which have been documented as both, suppliers of hydrocarbon-like compounds that fuel the 'cryptic' hydrocarbon cycle and as a source of isolation of new OHCB. A very new body of evidence suggests that OHCB are not only the active early stage colonizers of plastics and hence the important component of the ocean's 'plastisphere' but also encode an array of enzymes experimentally proven to act on petrochemical and bio-based polymers.
Collapse
|
5
|
Silva RM, Fernandes AM, Fiume F, Castro AR, Machado R, Pereira MA. Sequencing batch airlift reactors (SBAR): a suitable technology for treatment and valorization of mineral oil wastewaters towards lipids production. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124492. [PMID: 33218911 DOI: 10.1016/j.jhazmat.2020.124492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW) and spent oil-based wastewaters are some of the largest mineral oil wastewaters produced. Due to the high toxicity of hydrocarbons, several countries set stringent discharge limits and its treatment is compulsory before discharge. In this work, biological treatment of mineral oil wastewaters coupled with the production of bacterial lipids is demonstrated in sequential batch airlift reactors (SBAR). Two SBAR (2 L working volume) were used for treatment of PW and lubricant-based wastewater (LW), inoculated with Alcanivorax borkumensis SK2 (SBARAb+PW) and Rhodococcus opacus B4 (SBARR.o+LW), respectively. A total petroleum hydrocarbon removal (TPH) efficiency up to 96% and 80% were achieved for SBARAb+PW and SBARR.o+LW, respectively. Intracellular lipids production in SBARAb+PW increased when lower TPH/N ratios and higher feast stage duration were applied (up to 0.74 g g-1 cell dry weight (CDW)), whereas in SBARR.o+LW higher lipids production was observed for higher TPH/N ratios (0.94 g g-1 in CDW). Triacylglycerols (TAG) were the main intracellular lipid accumulated in both SBARAb+PW and SBARR.o+LW operations, while wax ester (WE) production was only observed extracellularly in the SBARAb+PW.
Collapse
Affiliation(s)
- Rita M Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ana M Fernandes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Francesca Fiume
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ana Rita Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Raul Machado
- CBMA Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Alcina Pereira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
6
|
Lijewski AM, Knutson CM, Lenneman EM, Barney BM. Evaluation of two thioesterases from Marinobacter aquaeolei VT8: Relationship to wax ester production. FEMS Microbiol Lett 2020; 368:fnaa206. [PMID: 33301558 DOI: 10.1093/femsle/fnaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of lipid-based biofuels is an important aspect of developing sustainable alternatives to conventional oils derived from fossil fuel reserves. Many biosynthetic approaches to biodiesel fuels and oils involve fatty acid derivatives as a precursor, and thioesterases have been employed in various strategies to increase fatty acid pools. Thioesterases liberate fatty acids from fatty acyl-coenzyme A or fatty acyl-acyl carrier protein substrates. The role played by thioesterases has not been extensively studied in model bacteria that accumulate elevated levels of biological oils based on fatty acid precursors. In this report, two primary thioesterases from the wax ester accumulating bacterium Marinobacter aquaeolei VT8 were heterologously expressed, isolated and characterized. These genes were further analyzed at the transcriptional level in the native bacterium during wax ester accumulation, and their genes were disrupted to determine the effect these changes had on wax ester levels. Combined, these results indicate that these two thioesterases do not play an integral role in wax ester accumulation in this natural lipid-accumulating model bacterium.
Collapse
Affiliation(s)
- Amelia M Lijewski
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Carolann M Knutson
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Eric M Lenneman
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108
| |
Collapse
|
7
|
Bioconversion of oily bilge waste to polyhydroxybutyrate (PHB) by marine Ochrobactrum intermedium. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Paradas WC, Tavares Salgado L, Pereira RC, Hellio C, Atella GC, de Lima Moreira D, do Carmo APB, Soares AR, Menezes Amado-Filho G. A Novel Antifouling Defense Strategy from Red Seaweed: Exocytosis and Deposition of Fatty Acid Derivatives at the Cell Wall Surface. PLANT & CELL PHYSIOLOGY 2016; 57:1008-1019. [PMID: 26936789 DOI: 10.1093/pcp/pcw039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.
Collapse
Affiliation(s)
- Wladimir Costa Paradas
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Leonardo Tavares Salgado
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, 100644, Brazil
| | - Claire Hellio
- Biodimar/LEMAR/IUEM, Université de Bretagne Occidentale (UBO), 6 Avenue Victor Le Gorgeu, CS93837, Brest cedex 3 29238, France
| | - Georgia Correa Atella
- Departamento de Bioquimica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Davyson de Lima Moreira
- Instituto de Tecnologia em Fármacos, Instituto Oswaldo Cruz, Rio de Janeiro, 21041-250, Brazil
| | | | - Angélica Ribeiro Soares
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social de Macaé, Universidade Federal do Rio de Janeiro, Macaé, 27910-970, Brazil
| | - Gilberto Menezes Amado-Filho
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| |
Collapse
|
9
|
Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 2015; 120:28-39. [PMID: 26343555 DOI: 10.1016/j.biochi.2015.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Gram negative bacteria as well as Gram positive actinobacteria possess the ability to accumulate variable amounts of wax esters (WE) and/or triacylglycerols (TAG) under nitrogen limiting conditions. In recent years many advances have been made to obtain insight into neutral lipid biosynthesis and accumulation in prokaryotes. The clinical and industrial relevance of bacterial WE/TAG significantly promoted basic and applied research in this field. The recent integrated omic studies as well as the functional characterization of diverse genes are contributing to unravel the composition of the WE/TAG-accumulating machinery in bacteria. This will be a valuable data for designing new drugs against bacteria with clinical importance, such as Mycobacterium tuberculosis, or for transferring and optimizing lipid accumulation in bacterial hosts naturally unable to produce such lipids, such as Escherichia coli. In this article, recent investigations addressing WE/TAG biosynthesis and storage in prokaryotes are presented. A comprehensive view of the current knowledge on the different genes/proteins involved in WE/TAG biosynthesis is included.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico (CRIDECIT), Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, CIT-CHUBUT, CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| |
Collapse
|
10
|
Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2709-27. [PMID: 24628496 PMCID: PMC3983371 DOI: 10.1021/jf4042134] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/12/2014] [Accepted: 03/16/2014] [Indexed: 05/08/2023]
Abstract
In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.
Collapse
Affiliation(s)
- Luis A. Garay
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - Kyria L. Boundy-Mills
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - J. Bruce German
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| |
Collapse
|
11
|
An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm. Appl Environ Microbiol 2013; 80:1126-31. [PMID: 24296497 DOI: 10.1128/aem.03056-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.
Collapse
|
12
|
Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni ME, Heipieper HJ, Klages S, Kotsyurbenko OR, Langer I, Nechitaylo TY, Lünsdorf H, Fernández M, Juárez S, Ciordia S, Singer A, Kagan O, Egorova O, Alain Petit P, Stogios P, Kim Y, Tchigvintsev A, Flick R, Denaro R, Genovese M, Albar JP, Reva ON, Martínez-Gomariz M, Tran H, Ferrer M, Savchenko A, Yakunin AF, Yakimov MM, Golyshina OV, Reinhardt R, Golyshin PN. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat Commun 2013; 4:2156. [PMID: 23877221 PMCID: PMC3759055 DOI: 10.1038/ncomms3156] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/18/2013] [Indexed: 01/21/2023] Open
Abstract
Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis--the paradigm of mesophilic hydrocarbonoclastic bacteria--O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments.
Collapse
Affiliation(s)
- Michael Kube
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem D-14195, Germany
- Section Phytomedicine, Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin-Dahlem D-14195, Germany
| | - Tatyana N. Chernikova
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
- School of Biological Sciences, Bangor University, Gwynedd, Wales LL57 2UW, UK
| | | | - Ana Beloqui
- Institute of Catalysis, CSIC, Madrid 28049, Spain
| | | | - María-Eugenia Guazzaroni
- Institute of Catalysis, CSIC, Madrid 28049, Spain
- Departamento de Química, Universidade de São Paulo, Ribeirao Preto 14049 901, Brazil
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig D-04318, Germany
| | - Sven Klages
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem D-14195, Germany
| | - Oleg R. Kotsyurbenko
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Ines Langer
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem D-14195, Germany
| | - Taras Y. Nechitaylo
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Heinrich Lünsdorf
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Marisol Fernández
- Proteomic Facility, National Centre for Biotechnology, CSIC, Madrid 28049, Spain
| | - Silvia Juárez
- Proteomic Facility, National Centre for Biotechnology, CSIC, Madrid 28049, Spain
| | - Sergio Ciordia
- Proteomic Facility, National Centre for Biotechnology, CSIC, Madrid 28049, Spain
| | - Alexander Singer
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 2C4
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Olga Kagan
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 2C4
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Olga Egorova
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Chemical Engineering and Applied Chemistry, C.H. Best Institute University of Toronto, Toronto, Canada M5G 1L6
| | - Pierre Alain Petit
- Department of Chemical Engineering and Applied Chemistry, C.H. Best Institute University of Toronto, Toronto, Canada M5G 1L6
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, C.H. Best Institute University of Toronto, Toronto, Canada M5G 1L6
| | - Youngchang Kim
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Biosciences Division, Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Anatoli Tchigvintsev
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | - Robert Flick
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | - Renata Denaro
- Laboratory of Marine Molecular Microbiology, Institute for Coastal Marine Environment (IAMC), CNR, Messina 98122, Italy
| | - Maria Genovese
- Laboratory of Marine Molecular Microbiology, Institute for Coastal Marine Environment (IAMC), CNR, Messina 98122, Italy
| | - Juan P. Albar
- Proteomic Facility, National Centre for Biotechnology, CSIC, Madrid 28049, Spain
| | - Oleg N. Reva
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | | | - Hai Tran
- School of Biological Sciences, Bangor University, Gwynedd, Wales LL57 2UW, UK
| | | | - Alexei Savchenko
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 2C4
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Chemical Engineering and Applied Chemistry, C.H. Best Institute University of Toronto, Toronto, Canada M5G 1L6
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, C.H. Best Institute University of Toronto, Toronto, Canada M5G 1L6
| | - Michail M. Yakimov
- Laboratory of Marine Molecular Microbiology, Institute for Coastal Marine Environment (IAMC), CNR, Messina 98122, Italy
| | - Olga V. Golyshina
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
- School of Biological Sciences, Bangor University, Gwynedd, Wales LL57 2UW, UK
| | - Richard Reinhardt
- Max-Planck Institute for Molecular Genetics, Berlin-Dahlem D-14195, Germany
- Present address: Max-Planck Genome Centre Cologne, Max-Planck Institute for Plant Breeding Research, Cologne D-50829, Germany
| | - Peter N. Golyshin
- Environmental Microbiology Group, HZI—Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
- School of Biological Sciences, Bangor University, Gwynedd, Wales LL57 2UW, UK
| |
Collapse
|
13
|
Identification of a residue affecting fatty alcohol selectivity in wax ester synthase. Appl Environ Microbiol 2012; 79:396-9. [PMID: 23087036 DOI: 10.1128/aem.02523-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal enzyme in the bacterial wax ester biosynthetic pathway is the bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT), which utilizes a fatty alcohol and a fatty acyl-coenzyme A (CoA) to synthesize the corresponding wax ester. In this report, we identify a specific residue in WS/DGAT enzymes obtained from Marinobacter aquaeolei VT8 and Acinetobacter baylyi that alters fatty alcohol selectivity and kinetic parameters when modified to alternative residues.
Collapse
|
14
|
Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 2012; 78:5734-45. [PMID: 22685145 DOI: 10.1128/aem.00534-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production.
Collapse
|
15
|
Willis RM, Wahlen BD, Seefeldt LC, Barney BM. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 2011; 50:10550-8. [PMID: 22035211 DOI: 10.1021/bi2008646] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.
Collapse
Affiliation(s)
- Robert M Willis
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | | | | | | |
Collapse
|
16
|
Quintana PG, Sandoval G, Baldessari A. Lipase-catalyzed synthesis of medium- and long-chain diesters of 2-oxoglutaric acid. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.596537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli. Appl Microbiol Biotechnol 2011; 93:357-65. [PMID: 21706173 DOI: 10.1007/s00253-011-3364-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/15/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
Microbial conversion is an important technology for the refinement of renewable resources. Here, we describe the biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol), a relevant intermediate in several chemical syntheses processes. Either the dihydroxyacetone phosphate aminotransferase/dihydrorhizobitoxine synthase (RtxA) of Bradyrhizobium elkanii USD94 or only the N-terminal domain (RtxA513) comprising the first reaction, respectively, was expressed in recombinant Escherichia coli. Serinol contents of up to 3.3 g/l were achieved in batch cultures. We could further clarify that glutamic acid is the preferred cosubstrate for the transamination of dihydroxyacetone phosphate to serinolphosphate, which is the essential step in serinol synthesis. An in vivo detoxification of serinol employing wax ester synthase/acyl-CoA:diacyl-glycerol acyl transferase from Acinetobacter baylyi ADP1 was not accomplished. This study paves the way for biotechnological production of serinol from glycerol derived from the biodiesel industry.
Collapse
|
18
|
Nakano M, Kihara M, Iehata S, Tanaka R, Maeda H, Yoshikawa T. Wax ester-like compounds as biosurfactants produced by Dietzia maris from n -alkane as a sole carbon source. J Basic Microbiol 2011; 51:490-8. [DOI: 10.1002/jobm.201000420] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/23/2010] [Indexed: 11/07/2022]
|
19
|
Kosa M, Ragauskas AJ. Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 2010; 29:53-61. [PMID: 21146236 DOI: 10.1016/j.tibtech.2010.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 12/13/2022]
Abstract
Heterotrophic oleaginous microorganisms are capable of producing over 20% of their weight in single cell oils (SCOs) composed of triacylglycerols (TAGs). These TAGs contain fatty acids, such as palmitic, stearic and oleic acids, that are well-suited for biodiesel applications. Although some of these microbes are able to accumulate SCOs while growing on inexpensive agro-industrial biomass, the competition with plant oil resources means that a significant increase in productivity is desired. The present review aims to summarize recent details in lipid metabolism research and engineering (e.g. direct fatty acid ethyl ester production), as well as culture condition optimization and innovations, such as solid-state or semi-solid-state fermentation, that can all contribute to higher productivity and further advancement of the field.
Collapse
Affiliation(s)
- Matyas Kosa
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
20
|
Vaysse PJ, Sivadon P, Goulas P, Grimaud R. Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Environ Microbiol 2010; 13:737-46. [DOI: 10.1111/j.1462-2920.2010.02377.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Manilla-Pérez E, Lange AB, Luftmann H, Robenek H, Steinbüchel A. Neutral lipid production in Alcanivorax borkumensis SK2 and other marine hydrocarbonoclastic bacteria. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|