1
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
2
|
Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vries RP. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 2018; 91:61-78. [PMID: 30425417 PMCID: PMC6231085 DOI: 10.1016/j.simyco.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
Collapse
Affiliation(s)
- M V Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - E McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - K Strasser
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - T T M Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - S Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - J L Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - T C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - M R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - A Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
3
|
Chánique AM, Parra LP. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Front Microbiol 2018; 9:194. [PMID: 29491854 PMCID: PMC5817062 DOI: 10.3389/fmicb.2018.00194] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa. Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.
Collapse
Affiliation(s)
- Andrea M Chánique
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto P Parra
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Sukpipat W, Komeda H, Prasertsan P, Asano Y. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. J Biosci Bioeng 2017; 123:20-27. [DOI: 10.1016/j.jbiosc.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
|
5
|
Zhang Z, Su B, Wu M, Lin J, Yang L. Strategies for eliminating l-arabinitol in the bioconversion of xylitol. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Hobbs ME, Williams HJ, Hillerich B, Almo SC, Raushel FM. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 2014; 53:4661-70. [PMID: 24963813 PMCID: PMC4108180 DOI: 10.1021/bi500656m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A previously
unknown metabolic pathway for the utilization of l-galactose
was discovered in a prevalent gut bacterium, Bacteroides vulgatus. The new pathway consists of three
previously uncharacterized enzymes that were found to be responsible
for the conversion of l-galactose to d-tagaturonate.
Bvu0219 (l-galactose dehydrogenase) was determined to oxidize l-galactose to l-galactono-1,5-lactone with kcat and kcat/Km values of 21 s–1 and 2.0
× 105 M–1 s–1,
respectively. The kinetic product of Bvu0219 is rapidly converted
nonenzymatically to the thermodynamically more stable l-galactono-1,4-lactone.
Bvu0220 (l-galactono-1,5-lactonase) hydrolyzes both the kinetic
and thermodynamic products of Bvu0219 to l-galactonate. However, l-galactono-1,5-lactone is estimated to be hydrolyzed 300-fold
faster than its thermodynamically more stable counterpart, l-galactono-1,4-lactone. In the final step of this pathway, Bvu0222
(l-galactonate dehydrogenase) oxidizes l-galactonate
to d-tagaturonate with kcat and kcat/Km values of
0.6 s–1 and 1.7 × 104 M–1 s–1, respectively. In the reverse direction, d-tagaturonate is reduced to l-galactonate with values
of kcat and kcat/Km of 90 s–1 and 1.6
× 105 M–1 s–1,
respectively. d-Tagaturonate is subsequently converted to d-glyceraldehyde and pyruvate through enzymes encoded within
the degradation pathway for d-glucuronate and d-galacturonate.
Collapse
Affiliation(s)
- Merlin Eric Hobbs
- Department of Biochemistry and Biophysics, §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|
7
|
Tiwari MK, Singh RK, Gao H, Kim T, Chang S, Kim HS, Lee JK. pH-rate profiles of l-arabinitol 4-dehydrogenase from Hypocrea jecorina and its application in l-xylulose production. Bioorg Med Chem Lett 2014; 24:173-6. [DOI: 10.1016/j.bmcl.2013.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
8
|
Battaglia D, Bossi S, Cascone P, Digilio MC, Prieto JD, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V. Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1249-56. [PMID: 23718124 DOI: 10.1094/mpmi-02-13-0059-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Below ground and above ground plant-insect-microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum ('San Marzano nano'), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground-above ground interactions remain to be assessed.
Collapse
|
9
|
Identification of important residues in diketoreductase from Acinetobacter baylyi by molecular modeling and site-directed mutagenesis. Biochimie 2011; 94:471-8. [PMID: 21893158 DOI: 10.1016/j.biochi.2011.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Diketoreductase (DKR) from Acinetobacter baylyi exhibits a unique property of double reduction of a β, δ-diketo ester with excellent stereoselectivity, which can serve as an efficient biocatalyst for the preparation of an important chiral intermediate for cholesterol lowering statin drugs. Taken the advantage of high homology between DKR and human heart 3-hydroxyacyl-CoA dehydrogenase (HAD), a molecular model was created to compare the tertiary structures of DKR and HAD. In addition to the possible participation of His-143 in the enzyme catalysis by pH profile, three key amino acid residues, Ser-122, His-143 and Glu-155, were identified and mutated to explore the possibility of involving in the catalytic process. The catalytic activities for mutants S122A/C, H143A/K and E155Q were below detectable level, while their binding affinities to the diketo ester substrate and cofactor NADH did not change obviously. The experimental results were further supported by molecular docking, suggesting that Ser-122 and His-143 were essential for the proton transfer to the carbonyl functional groups of the substrate. Moreover, Glu-155 was crucial for maintaining the proper orientation and protonation of the imidazole ring of His-143 for efficient catalysis.
Collapse
|