1
|
Köhler JM, Ehrhardt L, Günther PM, Cao J. Soil Bacteria in Archaeology: What Could Rank Abundance Functions Tell Us About Ancient Human Impacts on Microbial Communities? Microorganisms 2024; 12:2243. [PMID: 39597632 PMCID: PMC11596836 DOI: 10.3390/microorganisms12112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Metagenomic analysis of soil bacterial communities based on 16S rRNA reflects a typical community composition containing a low number of high-abundance types and a very high number of low-abundance types. Here, the formation of characteristic rank order functions of bacterial abundance is investigated by modelling the dynamics of soil bacterial communities, assuming a succession of different bacterial populations that grow rapidly and decay more slowly. We found that the characteristic shape of typical rank order functions is well reflected by simulations. In addition, our model allowed us to investigate strong disturbances in the soil, which could be expected in cases of strongly changing local environmental conditions in soil, e.g., after translocation and covering of soil material. Such events could lead to the formation of shoulders in the rank order functions. Abundance rank orders observed in cases of some archaeological soil samples do indeed show such a shoulder and could be well interpreted by simulated rank order functions. As a result, it can be concluded that the investigations herein support our hypothesis that abundance rank orders contain information about the temporal order of developing bacterial types in changing communities and thus store information about local environmental conditions in the past, including ancient humans' impact on soil. This information can be used for interpretation of archeological findings and for reconstruction of different former human activities, as well as knowledge on the translocation of soil material in the past.
Collapse
Affiliation(s)
- J. Michael Köhler
- Institute for Micro- and Nanotechnologies/Institute for Chemistry and Biotechnology, Technische University Ilmenau, PF 10 05 65, D-98684 Ilmenau, Germany; (L.E.); (P.M.G.); (J.C.)
| | | | | | | |
Collapse
|
2
|
Chakraborty S, Bhattacharjee S, Tiwari B, Jaishwal T, Singh SS, Mishra AK. Deciphering the mechanisms of zinc tolerance in the cyanobacterium Anabaena sphaerica and its zinc bioremediation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9591-9608. [PMID: 36057058 DOI: 10.1007/s11356-022-22388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria adopt a variety of changes at proteomic and metabolic levels for surviving under harmful environmental conditions including heavy metal stress. The current study investigates the impact of zinc stress on the proteome of Anabaena sphaerica to get an insight into its molecular mechanisms of zinc tolerance. The study revealed three different aspects that were associated with the zinc tolerance in A. sphaerica: (i) the reduced expression of photosynthesis, nitrogen fixation, energy metabolism, respiratory, and transcriptional/translational proteins probably to conserve energy and utilizing it to sustain growth; (ii) the enhanced expression of metallothionein and ferritin domain protein All 3940 to chelate free zinc ions whereas upregulation of antioxidative proteins for detoxifying reactive oxygen species; and (iii) the expression of large numbers of hypothetical proteins to maintain the important cellular functions. Furthermore, over expressions of sulfate adenylyl transferase and cystathionine beta synthase along with the increased synthesis of peptidases and thiolated antioxidant proteins were also noticed which denoted cysteine synthesis under sulfur deprivation possibly by mobilizing the sulfur from dead cells and its channelization towards the production of thiolated antioxidants. Besides tolerating excess amount of zinc, A. sphaerica exhibited high zinc biosorption efficiency which confirmed its outstanding zinc bioremediation potential.
Collapse
Affiliation(s)
- Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Balkrishna Tiwari
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Tameshwar Jaishwal
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
4
|
Biomineralization of Nickel Struvite Linked to Metal Resistance in Streptomyces mirabilis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103061. [PMID: 35630535 PMCID: PMC9145468 DOI: 10.3390/molecules27103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Biomineral formation is a common trait and prominent for soil Actinobacteria, including the genus Streptomyces. We investigated the formation of nickel-containing biominerals in the presence of a heavy-metal-resistant Streptomyces mirabilis P16B-1. Biomineralization was found to occur both in solid and liquid media. Minerals were identified with Raman spectroscopy and TEM-EDX to be either Mg-containing struvite produced in media containing no nickel, or Ni-struvite where Ni replaces the Mg when nickel was present in sufficient concentrations in the media. The precipitation of Ni-struvite reduced the concentration of nickel available in the medium. Therefore, Ni-struvite precipitation is an efficient mechanism for tolerance to nickel. We discuss the contribution of a plasmid-encoded nickel efflux transporter in aiding biomineralization. In the elevated local concentrations of Ni surrounding the cells carrying this plasmid, more biominerals occurred supporting this point of view. The biominerals formed have been quantified, showing that the conditions of growth do influence mineralization. This control is also visible in differences observed to biosynthetically synthesized Ni-struvites, including the use of sterile-filtered culture supernatant. The use of the wildtype S. mirabilis P16B-1 and its plasmid-free derivative, as well as a metal-sensitive recipient, S. lividans, and the same transformed with the plasmid, allowed us to access genetic factors involved in this partial control of biomineral formation.
Collapse
|
5
|
Biomineralization by Extremely Halophilic and Metal-Tolerant Community Members from a Sulfate-Dominated Metal-Rich Environment. Microorganisms 2021; 10:microorganisms10010079. [PMID: 35056528 PMCID: PMC8780871 DOI: 10.3390/microorganisms10010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
The adaptation to adverse environmental conditions can lead to adapted microbial communities that may be screened for mechanisms involved in halophily and, in this case, metal tolerance. At a former uranium mining and milling site in Seelingstädt, Germany, microbial communities from surface waters and sediment soils were screened for isolates surviving high salt and metal concentrations. The high salt contents consisted mainly of chloride and sulfate, both in soil and riverbed sediment samples, accompanied by high metal loads with presence of cesium and strontium. The community structure was dominated by Chloroflexi, Proteobacteria and Acidobacteriota, while only at the highest contaminations did Firmicutes and Desulfobacterota reach appreciable percentages in the DNA-based community analysis. The extreme conditions providing high stress were mirrored by low numbers of cultivable strains. Thirty-four extremely halotolerant bacteria (23 Bacillus sp. and another 4 Bacillales, 5 Actinobacteria, and 1 Gamma-Proteobacterium) surviving 25 to 100 mM SrCl2, CsCl, and Cs2SO4 were further analyzed. Mineral formation of strontium- or cesium-struvite could be observed, reducing bioavailability and thereby constituting the dominant metal and salt resistance strategy in this environment.
Collapse
|
6
|
Singh S, Hiranmai RY. Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat. Heliyon 2021; 7:e08284. [PMID: 34778577 PMCID: PMC8577108 DOI: 10.1016/j.heliyon.2021.e08284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Heavy metal contamination is a universal concern due to health risks associated with metal pollution. Soil contamination by heavy metals is known to affect microbial activities at elevated concentrations adversely. However, indigenous soil bacterial populations' response to added heavy metal and metal combinations is poorly understood. Microbes prevailing in the soil are the driving factors. Their properties are recognized as sensitive indicators of soil quality and health. Moreover, these microscopic organisms are accountable for the fertility and aeration of the soil that forms fundamental aspects of soil function. The current study was performed to explore the diversity of bacterial species in heavy metal polluted roadside soil. The roadside soil samples were collected from diverse sites and processed for physicochemical properties, microbial characterization, and heavy metals distribution in the selected locations. Serial dilution and spread plate techniques were used for the isolation of bacterial species. The 16S-rRNA gene sequencing identified bacterial species in roadside soil as Bacillus drentensis (MK217088), Bacillus safensis (MK774729), Bacillus haynesii (MK192808), Bacillus subtilis (MK217089), and Bacillus cereus (MK801278). In addition, the 16S rRNA sequences of isolated bacterial strains were aligned to generate a phylogenetic tree. Thus, the current research study provides a platform for efficiently investigating roadside soils by microbial profiling that may discover novel microbes of scientific significance and improved potential.
Collapse
Affiliation(s)
- Snigdha Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - R Y Hiranmai
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| |
Collapse
|
7
|
Syed A, Zeyad MT, Shahid M, Elgorban AM, Alkhulaifi MM, Ansari IA. Heavy Metals Induced Modulations in Growth, Physiology, Cellular Viability, and Biofilm Formation of an Identified Bacterial Isolate. ACS OMEGA 2021; 6:25076-25088. [PMID: 34604686 PMCID: PMC8482775 DOI: 10.1021/acsomega.1c04396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/17/2023]
Abstract
The release of untreated tannery effluents comprising biotoxic heavy metal (HM) compounds into the ecosystem is one of our society's most serious environmental and health issues. After discharge, HM-containing industrial effluents reach agricultural soils and thus negatively affect the soil microbial diversity. Considering these, we assessed the effect of HMs on identified soil beneficial bacteria. Here, the effects of four heavy metals (HMs), viz., chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb), on cellular growth, physiology, cell permeability, and biofilm formation of Enterobacter cloacae MC9 (accession no.: MT672587) were evaluated. HMs in a concentration range of 25-200 μg mL-1 were used throughout the study. Among HMs, Cd in general had the maximum detrimental effect on bacterial physiology. With increasing concentrations of HMs, bacterial activities consistently decreased. For instance, 200 μgCr mL-1 concentration greatly and significantly (p ≤ 0.05) reduced the synthesis of indole-3-acetic acid (IAA) by 70% over control. Furthermore, 200 μg mL-1 Cd maximally and significantly (p ≤ 0.05) reduced the synthesis of 2,3-dihydroxybenzoic acid (2,3-DHBA), salicylic acid (SA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, and extra polymeric substances (EPSs) of E. cloacae MC9 by 80, 81, 77, and 59%, respectively, over control. While assessing the toxic effect of HMs on the P-solubilizing activity of E. cloacae, the toxicity pattern followed the order Cr (mean value = 94.6 μg mL-1) > Cd (mean value = 127.2 μg mL-1) > Pb (mean value = 132.4 μg mL-1) > Ni (mean value = 140.4 μg mL-1). Furthermore, the colony-forming unit (CFU) count (Log10) of strain MC9 was completely inhibited at 150, 175, and 200 μg mL-1 concentrations of Cr and Cd. The confocal laser scanning microscopic (CLSM) analysis of HM-treated bacterial cells showed an increased number of red-colored dead cells as the concentration of HMs increased from 25 to 200 μg mL-1. Likewise, the biofilm formation ability of strain MC9 was maximally (p ≤ 0.05) inhibited at higher concentrations of Cd. In summary, the present investigation undoubtedly suggests that E. cloacae strain MC9 recovered from the HM-contaminated rhizosphere endowed with multiple activities could play an important role in agricultural practices to augment crop productivity in soils contaminated with HMs. Also, there is an urgent need to control the direct discharge of industrial waste into running water to minimize heavy metal pollution. Furthermore, before the application of HMs in agricultural fields, their appropriate field dosages must be carefully monitored.
Collapse
Affiliation(s)
- Asad Syed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| |
Collapse
|
8
|
Microfluidically supported characterization of responses of Rhodococcus erythropolis strains isolated from different soils on Cu-, Ni-, and Co-stress. Braz J Microbiol 2021; 52:1405-1415. [PMID: 33956334 PMCID: PMC8324611 DOI: 10.1007/s42770-021-00495-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 10/26/2022] Open
Abstract
We present a new methodological approach for the assessment of the susceptibility of Rhodococcus erythropolis strains from specific sampling sites in response to increasing heavy metal concentration (Cu2+, Ni2+, and Co2+) using the droplet-based microfluid technique. All isolates belong to the species R. erythropolis identified by Sanger sequencing of the 16S rRNA. The tiny step-wise variation of metal concentrations from zero to the lower mM range in 500 nL droplets not only provided accurate data for critical metal ion concentrations but also resulted in a detailed visualization of the concentration-dependent response of bacterial growth and autofluorescence activity. As a result, some of the isolates showed similar characteristics in heavy metal tolerance against Cu2+, Ni2+, and Co2+. However, significantly different heavy metal tolerances were found for other strains. Surprisingly, samples from the surface soil of ancient copper mining areas supplied mostly strains with a moderate sensitivity to Cu2+, Ni2+, and Co2+, but in contrast, a soil sample from an excavation site of a medieval city that had been covered for about eight centuries showed an extremely high tolerance against cobalt ion (up to 36 mM). The differences among the strains not only may be regarded as results of adaptation to the different environmental conditions faced by the strains in nature but also seem to be related to ancient human activities and temporal partial decoupling of soil elements from the surface. This investigation confirmed that microfluidic screening offers empirical characterization of properties from same species which has been isolated from sites known to have different human activities in the past.
Collapse
|
9
|
Turner RJ, Huang LN, Viti C, Mengoni A. Metal-Resistance in Bacteria: Why Care? Genes (Basel) 2020; 11:E1470. [PMID: 33302493 PMCID: PMC7764034 DOI: 10.3390/genes11121470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Heavy metal resistance is more than the tolerance one has towards a particular music genera [...].
Collapse
Affiliation(s)
- Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Carlo Viti
- Laboratorio Genexpress, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, 50144 Florence, Italy;
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Dipartimento di Biologia, Università di Firenze, 50019 Florence, Italy
| |
Collapse
|
10
|
Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). COMMUNITY ECOL 2020. [DOI: 10.1007/s42974-020-00017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract16S rRNA profiling has been applied for the investigation of bacterial communities of surface soil samples from forest-covered areas of ten prehistorical ramparts from different parts of Thuringia. Besides the majority bacterial types that are present in all samples, there could be identified bacteria that are highly abundant in some places and absent or low abundant in others. These differences are mainly related to the acidity of substrate and distinguish the communities of lime stone hills from soils of sand/quartzite and basalt hills. Minority components of bacterial communities show partially large differences that cannot be explained by the pH of the soil or incidental effects, only. They reflect certain relations between the communities of different places and could be regarded as a kind of signature-like patterns. Such relations had also been found in a comparison of the data from ramparts with formerly studied 16S rRNA profiling from an iron-age burial field. The observations are supporting the idea that a part of the components of bacterial communities from soil samples reflect their ecological history and can be understood as the “ecological memory” of a place. Probably such memory effects can date back to prehistoric times and might assist in future interpretations of archaeological findings on the prehistoric use of a place, on the one hand. On the other hand, the genetic profiling of soils of prehistoric places contributes to the evaluation of anthropogenic effects on the development of local soil bacterial diversity.
Collapse
|
11
|
Statistical modeling-approach for optimization of Cu 2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Sci Rep 2020; 10:9491. [PMID: 32528020 PMCID: PMC7289884 DOI: 10.1038/s41598-020-66101-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Abstract
Heavy metals are environmental pollutants affect the integrity and distribution of living organisms in the ecosystem and also humans across the food chain. The study targeted the removal of copper (Cu2+) from aqueous solutions, depending on the biosorption process. The bacterial candidate was identified using 16S rRNA sequencing and phylogenetic analysis, in addition to morphological and cultural properties as Azotobacter nigricans NEWG-1. The Box-Behnken design was applied to optimize copper removal by Azotobacter nigricans NEWG-1 and to study possible interactive effects between incubation periods, pH and initial CuSO4 concentration. The data obtained showed that the maximum copper removal percentage of 80.56% was reached at run no. 12, under the conditions of 200 mg/L CuSO4, 4 days’ incubation period, pH, 8.5. Whereas, the lowest Cu2+ removal (12.12%) was obtained at run no.1. Cells of Azotobacter nigricans NEWG-1 before and after copper biosorption were analyzed using FTIR, EDS and SEM. FTIR analysis indicates that several functional groups have participated in the biosorption of metal ions including hydroxyl, methylene, carbonyl, carboxylate groups. Moreover, the immobilized bacterial cells in sodium alginate-beads removed 82.35 ± 2.81% of copper from the aqueous solution, containing an initial concentration of 200 mg/L after 6 h. Azotobacter nigricans NEWG-1 proved to be an efficient biosorbent in the elimination of copper ions from environmental effluents, with advantages of feasibility, reliability and eco-friendly.
Collapse
|
12
|
Köhler JM, Kalensee F, Cao J, Günther PM. Hadesarchaea and other extremophile bacteria from ancient mining areas of the East Harz region (Germany) suggest an ecological long-term memory of soil. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0874-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
13
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:302-322. [PMID: 30758729 DOI: 10.1007/s10646-019-02023-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution destruct soil microbial compositions and functions, plant's performance and subsequently human health. Culturable microbes among many metal abatement strategies are considered inexpensive, viable and environmentally safe. In this study, nitrogen fixing bacterial strain CAZ3 recovered from chilli rhizosphere tolerated 100, 1000 and 1200 µg mL-1 of cadmium, chromium and nickel, respectively and was identified as Azotobacter chroococcum by 16S rDNA sequence analysis. Under metal stress, cellular morphology of A. chroococcum observed under SEM was found distorted and shrinkage of cells was noticed when grown with 50 µg mL-1 of Cd (cell size 1.7 µm) and 100 of µg mL-1 Ni (cell size 1.3 µm) compared to untreated control (cell size 1.8 µm). In the presence of 100 µg mL-1 of Cr, cells became elongated and measured 1.9 µm in size. Location of metals inside the cells was revealed by EDX. A dose dependent growth arrest and consequently the death of A. chroococcum cells was revealed under CLSM. A. chroococcum CAZ3 secreted 320, 353 and 133 µg EPS mL-1 when grown with 100 µg mL-1 each of Cd, Cr and Ni, respectively. The EDX revealed the presence of 0.4, 0.07 and 0.24% of Cd, Cr and Ni, respectively within EPS extracted from metal treated cells. Moreover, a dark brown pigment (melanin) secreted by A. chroococcum cells under metal pressure displayed tremendous metal chelating activity. The EDX spectra of melanin extracted from metal treated cells of A. chroococcum CAZ3 displayed 0.53, 0.22 and 0.12% accumulation of Cd, Cr and Ni, respectively. The FT-IR spectra of EPS and melanin demonstrated stretching vibrations and variations in surface functional groups of bacterial cells. The C-H stretching of CH3 in fatty acids and CH2 groups, stretching of N-H bond of proteins and O-H bond of hydroxyl groups caused the shifting of peaks in the EPS spectra. Similar stretching vibrations were recorded in metal treated melanin which involved CHO, alkyl, carboxylate and alkene groups resulting in significant peak shifts. Nuclear magnetic resonance (NMR) spectrum of EPS extracted from A. chroococcum CAZ3 revealed apparent peak signals at 4.717, 9.497, 9.369 and 9.242 ppm. However, 1H NMR peaks were poorly resolved due largely to the impurity/viscosity of the EPS. The entrapment of metals by EPS and melanin was confirmed by EDX. Also, the induction and excretion of variable amounts of metallothioneins (MTs) by A. chroococcum under metal pressure was interesting. Conclusively, the present findings establish- (i) cellular damage due to Cd, Cr and Ni and (ii) role of EPS, melanin and MTs in adsorption/complexation and concurrently the removal of heavy metals. Considering these, A. chroococcum can be promoted as a promising candidate for supplying N efficiently to plants and protecting plants from metal toxicity while growing under metal stressed environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - Bilal Ahmed
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Almas Zaidi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohd Saghir Khan
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
14
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 778] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I. Cadmium specific proteomic responses of a highly resistantPseudomonas aeruginosasan ai. RSC Adv 2018; 8:10549-10560. [PMID: 35540485 PMCID: PMC9078880 DOI: 10.1039/c8ra00371h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/07/2018] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa san ai is a promising candidate for bioremediation of cadmium pollution, as it resists a high concentration of up to 7.2 mM of cadmium. Leaving biomass of P. aeruginosa san ai exposed to cadmium has a large biosorption potential, implying its capacity to extract heavy metal from contaminated medium. In the present study, we investigated tolerance and accumulation of cadmium on protein level by shotgun proteomics approach based on liquid chromatography and tandem mass spectrometry coupled with bioinformatics to identify proteins. Size exclusion chromatography was used for protein prefractionation to preserve native forms of metalloproteins and protein complexes. Using this approach a total of 60 proteins were observed as up-regulated in cadmium-amended culture. Almost a third of the total numbers of up-regulated were metalloproteins. Particularly interesting are denitrification proteins which are over expressed but not active, suggesting their protective role in conditions of heavy metal exposure. P. aeruginosa san ai developed a complex mechanism to adapt to cadmium, based on: extracellular biosorption, bioaccumulation, the formation of biofilm, controlled siderophore production, enhanced respiration and modified protein profile. An increased abundance of proteins involved in: cell energy metabolism, including denitrification proteins; amino acid metabolism; cell motility and posttranslational modifications, primarily based on thiol-disulfide exchange, were observed. Enhanced oxygen consumption of biomass in cadmium-amended culture versus control was found. Our results signify that P. aeruginosa san ai is naturally well equipped to overcome and survive high doses of cadmium and, as such, has a great potential for application in bioremediation of cadmium polluted sites. When exposed to cadmium a highly resistant strain P. aeruginosa san ai responds by an increased metalloprotein expression (particularly denitrification proteins), an enhanced respiration, and a pronounced thiol-disulfide protein modifications.![]()
Collapse
Affiliation(s)
| | - Milena Rikalović
- Faculty of Applied Ecology Futura
- University of Singidunum
- Belgrade
- Serbia
| | - Gordana Gojgić-Cvijović
- Institute of Chemistry
- Technology and Metallurgy
- Department of Chemistry
- University of Belgrade
- Belgrade
| | | | - Miroslav Vrvić
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | - Ilija Brčeski
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | | | - Branka Lončarević
- Institute of Chemistry
- Technology and Metallurgy
- Department of Chemistry
- University of Belgrade
- Belgrade
| | - Kristina Gopčević
- Department of Chemistry
- Faculty of Medicine
- University of Belgrade
- Belgrade
- Serbia
| | - Ivanka Karadžić
- Department of Chemistry
- Faculty of Medicine
- University of Belgrade
- Belgrade
- Serbia
| |
Collapse
|
16
|
Thavamani P, Samkumar RA, Satheesh V, Subashchandrabose SR, Ramadass K, Naidu R, Venkateswarlu K, Megharaj M. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:495-505. [PMID: 28688926 DOI: 10.1016/j.envpol.2017.06.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 05/11/2023]
Abstract
Derelict mines pose potential risks to environmental health. Several factors such as soil structure, organic matter, and nutrient content are the greatly affected qualities in mined soils. Soil microbial communities are an important element for successful reclamation because of their major role in nutrient cycling, plant establishment, geochemical transformations, and soil formation. Yet, microorganisms generally remain an undervalued asset in mined sites. The microbial diversity in derelict mine sites consists of diverse species belonging to four key phyla: Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. The activity of plant symbiotic microorganisms including root-colonizing rhizobacteria and ectomycorrhizal fungi of existing vegetation in the mined sites is very high since most of these microbes are extremophiles. This review outlines the importance of microorganisms to soil health and the rehabilitation of derelict mines and how microbial activity and diversity can be exploited to better plan the soil rehabilitation. Besides highlighting the major breakthroughs in the application of microorganisms for mined site reclamation, we provide a critical view on plant-microbiome interactions to improve revegetation at the mined sites. Also, the need has been emphasized for deciphering the molecular mechanisms of adaptation and resistance of rhizosphere and non-rhizosphere microbes in abandoned mine sites, understanding their role in remediation, and subsequent harnessing of their potential to pave the way in future rehabilitation strategies for mined sites.
Collapse
Affiliation(s)
- Palanisami Thavamani
- Global Centre for Environmental Remediation, University of Newcastle, Australia.
| | - R Amos Samkumar
- ICAR- National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Viswanathan Satheesh
- ICAR- National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | | | - Kavitha Ramadass
- Future Industries Institute, University of South Australia, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | | |
Collapse
|
17
|
Gatheru Waigi M, Sun K, Gao Y. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends Biotechnol 2017; 35:883-899. [DOI: 10.1016/j.tibtech.2017.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
|
18
|
Ben Said S, Or D. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia. Front Microbiol 2017; 8:1125. [PMID: 28670307 PMCID: PMC5472676 DOI: 10.3389/fmicb.2017.01125] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of “microbial ecological power” observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to “discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems,” we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their potential applications. We briefly review existing tools to engineer such assemblies and optimize potential benefits resulting from the collective activity of their members. Prospective microbial consortia and proposed spatial configurations will be illustrated and preliminary calculations highlighting the advantages of SLMC over co-cultures will be presented, followed by a discussion of challenges and opportunities for moving forward with some designs.
Collapse
Affiliation(s)
- Sami Ben Said
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| | - Dani Or
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| |
Collapse
|
19
|
Kirtzel J, Siegel D, Krause K, Kothe E. Stone-Eating Fungi: Mechanisms in Bioweathering and the Potential Role of Laccases in Black Slate Degradation With the Basidiomycete Schizophyllum commune. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:83-101. [PMID: 28438269 DOI: 10.1016/bs.aambs.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.
Collapse
Affiliation(s)
| | | | | | - Erika Kothe
- Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
20
|
Nirola R, Megharaj M, Beecham S, Aryal R, Thavamani P, Vankateswarlu K, Saint C. Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20131-20150. [PMID: 27539471 DOI: 10.1007/s11356-016-7372-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 05/23/2023]
Abstract
Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of 'plants under action' against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as 'integrated remediation technology,' is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution. Graphical abstract Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.
Collapse
Affiliation(s)
- Ramkrishna Nirola
- Future Industries Institute, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia.
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | - Simon Beecham
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| | - Rupak Aryal
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW, 2308, Australia
| | | | - Christopher Saint
- Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, 5095, Australia
| |
Collapse
|
21
|
Henke C, Jung EM, Kothe E. Hartig' net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19394-9. [PMID: 25791268 DOI: 10.1007/s11356-015-4354-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/09/2015] [Indexed: 05/27/2023]
Abstract
For re-forestation of metal-contaminated land, ectomycorrhizal trees may provide a solution. Hence, the study of the interaction is necessary to allow for comprehensive understanding of the mutually symbiotic features. On a structural level, hyphal mantle and the Hartig' net formed in the root apoplast are essential for plant protection and mycorrhizal functioning. As a model, we used the basidiomycete Tricholoma vaccinum and its host spruce (Picea abies). Using an optimized hydroponic cultivation system, both features could be visualized and lower stress response of the tree was obtained in non-challenged cultivation. Larger spaces in the apoplasts could be shown with high statistical significance. The easy accessibility will allow to address metal stress or molecular responses in both partners. Additionally, the proposed cultivation system will enable for other experimental applications like addressing flooding, biological interactions with helper bacteria, chemical signaling, or other biotic or abiotic challenges relevant in the natural habitat.
Collapse
Affiliation(s)
- Catarina Henke
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07734, Jena, Germany.
| | - Elke-Martina Jung
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07734, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07734, Jena, Germany
| |
Collapse
|
22
|
Kürsten D, Möller F, Gross GA, Lenk C, Visaveliya N, Schüler T, Köhler JM. Identification of response classes from heavy metal‐tolerant soil microbial communities by highly resolved concentration‐dependent screenings in a microfluidic system. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dana Kürsten
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| | - Frances Möller
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| | - Gregor Alexander Gross
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| | - Claudia Lenk
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| | - Nikunjkumar Visaveliya
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| | - Tim Schüler
- TLDA Weimar Humboldtstr. 11 D‐99423 Weimar Germany
| | - Johann Michael Köhler
- Techn. Univ. Ilmenau, Institute for Micro‐ and Nanotechnologies Institute for Chemistry and Biotechnology PO box 100565 D‐98684 Ilmenau Germany
| |
Collapse
|
23
|
Gall JE, Boyd RS, Rajakaruna N. Transfer of heavy metals through terrestrial food webs: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:201. [PMID: 25800370 DOI: 10.1007/s10661-015-4436-3] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 03/12/2015] [Indexed: 05/14/2023]
Abstract
Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.
Collapse
Affiliation(s)
- Jillian E Gall
- College of the Atlantic, 105 Eden Street, Bar Harbor, ME, 04609, USA
| | | | | |
Collapse
|
24
|
Phieler R, Voit A, Kothe E. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 141:211-35. [PMID: 23719709 DOI: 10.1007/10_2013_200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heavy metal contamination of soil as a result of, for example, mining operations, evokes worldwide concern. The use of selected metal-accumulating plants to clean up heavy metal contaminated sites represents a sustainable and inexpensive method for remediation approaches and, at the same time, avoids destruction of soil function. Within this scenario, phytoremediation is the use of plants (directly or indirectly) to reduce the risks of contaminants in soil to the environment and human health. Microbially assisted bioremediation strategies, such as phytoextraction or phytostabilization, may increase the beneficial aspects and can be viewed as potentially useful methods for application in remediation of low and heterogeneously contaminated soil. The plant-microbe interactions in phytoremediation strategies include mutually beneficial symbiotic associations such as mycorrhiza, plant growth promoting bacteria (PGPB), or endophytic bacteria that are discussed with respect to their impact on phytoremediation approaches.
Collapse
Affiliation(s)
- René Phieler
- Institute of Microbiology-Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | |
Collapse
|
25
|
Mackie KA, Schmidt HP, Müller T, Kandeler E. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:34-43. [PMID: 25217742 DOI: 10.1016/j.scitotenv.2014.08.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms.
Collapse
Affiliation(s)
- K A Mackie
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Emil-Wolff-Strasse 27, 70599 Stuttgart, Germany.
| | - H P Schmidt
- Ithaka Institute, La Place 92, 1966 Ayent, Switzerland
| | - T Müller
- Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 20, 70599 Stuttgart, Germany
| | - E Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Emil-Wolff-Strasse 27, 70599 Stuttgart, Germany
| |
Collapse
|
26
|
Nicoară A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Iordache V, Kothe E. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6905-6920. [PMID: 24407790 DOI: 10.1007/s11356-013-2489-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
We performed an experiment at pot scale to assess the effect of plant growth-promoting bacteria (PGPB) on the development of five plant species grown on a tailing dam substrate. None of the species even germinated on inoculated unamended tailing material, prompting use of compost amendment. The effect of inoculation on the amended material was to increase soil respiration, and promote elements immobilisation at plant root surface. This was associated with a decrease in the concentrations of elements in the leaching water and an increase of plant biomass, statistically significant in the case of two species: Agrostis capillaris and Festuca rubra. The experiment was repeated at lysimeter scale with the species showing the best development at pot scale, A. capillaris, and the significant total biomass increase as a result of inoculation was confirmed. The patterns of element distribution in plants also changed (the concentrations of metals in the roots of A. capillaris and F. rubra significantly decreased in inoculated treatments, while phosphorus concentration significantly increased in roots of A. capillaris in inoculated treatment at lysimeter scale). Measured variables for plant oxidative stress did not change after inoculations. There were differences of A. capillaris plant-soil system response between experimental scales as a result of different substrate column structure and plant age at the sampling moment. Soil respiration was significantly larger at lysimeter scale than at pot scale. Leachate concentrations of As, Mn and Ni had significantly larger concentrations at lysimeter scale than at pot scale, while Zn concentrations were significantly smaller. Concentrations of several metals were significantly smaller in A. capillaris at lysimeter scale than at pot scale. From an applied perspective, a system A. capillaris-compost-PGPB selected from the rhizosphere of the tailing dam native plants can be an option for the phytostabilisation of tailing dams. Results should be confirmed by investigation at field plot scale.
Collapse
Affiliation(s)
- Andrei Nicoară
- Research Centre for Ecological Services (CESEC), Spl. Independentei 91-92, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Influence of transition metals on Streptomyces coelicolor and S. sioyaensis and generation of chromate-reducing mutants. Folia Microbiol (Praha) 2013; 59:147-53. [DOI: 10.1007/s12223-013-0277-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 09/05/2013] [Indexed: 11/27/2022]
|
28
|
Nagato EG, D'eon JC, Lankadurai BP, Poirier DG, Reiner EJ, Simpson AJ, Simpson MJ. (1)H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium. CHEMOSPHERE 2013; 93:331-337. [PMID: 23732010 DOI: 10.1016/j.chemosphere.2013.04.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/06/2013] [Accepted: 04/27/2013] [Indexed: 05/27/2023]
Abstract
Metal and metalloid contamination constitutes a major concern in aquatic ecosystems. Thus it is important to find rapid and reliable indicators of metal stress to aquatic organisms. In this study, we tested the use of (1)H nuclear magnetic resonance (NMR) - based metabolomics to examine the response of Daphnia magna neonates after a 48h exposure to sub-lethal concentrations of arsenic (49μgL(-1)), copper (12.4μgL(-1)) or lithium (1150μgL(-1)). Metabolomic responses for all conditions were compared to a control using principal component analysis (PCA) and metabolites that contributed to the variation between the exposures and the control condition were identified and quantified. The PCA showed that copper and lithium exposures result in statistically significant metabolite variations from the control. Contributing to this variation was a number of amino acids such as: phenylalanine, leucine, lysine, glutamine, glycine, alanine, methionine and glutamine as well as the nucleobase uracil and osmolyte glycerophosphocholine. The similarities in metabolome changes suggest that lithium has an analogous mode of toxicity to that of copper, and may be impairing energy production and ionoregulation. The PCA also showed that arsenic exposure resulted in a metabolic shift in comparison to the control population but this change was not statistically significant. However, significant changes in specific metabolites such as alanine and lysine were observed, suggesting that energy metabolism is indeed disrupted. This research demonstrates that (1)H NMR-based metabolomics is a viable platform for discerning metabolomic changes and mode of toxicity of D. magna in response to metal stressors in the environment.
Collapse
Affiliation(s)
- Edward G Nagato
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | | | | | | |
Collapse
|
29
|
Application of micro-segmented flow for two-dimensional characterization of the combinatorial effect of zinc and copper ions on metal-tolerant Streptomyces strains. Appl Microbiol Biotechnol 2013; 97:8923-30. [DOI: 10.1007/s00253-013-5147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/09/2023]
|
30
|
Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. SOIL BIOLOGY & BIOCHEMISTRY 2013; 60:182-194. [PMID: 23645938 PMCID: PMC3618436 DOI: 10.1016/j.soilbio.2013.01.012] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 05/04/2023]
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.
Collapse
Affiliation(s)
- Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Melanie Kuffner
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), CSIC, Apdo. 122, 15780 Santiago de Compostela, Spain
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, B-3590 Diepenbeek, Belgium
| | - Walter W. Wenzel
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Katharina Fallmann
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-3430 Tulln, Austria
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, A-3430 Tulln, Austria
| |
Collapse
|
31
|
Mackie KA, Müller T, Kandeler E. Remediation of copper in vineyards--a mini review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 167:16-26. [PMID: 22522314 DOI: 10.1016/j.envpol.2012.03.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 05/27/2023]
Abstract
Viticulturists use copper fungicide to combat Downy Mildew. Copper, a non-degradable heavy metal, can accumulate in soil or leach into water sources. Its accumulation in topsoil has impacted micro and macro organisms, spurring scientists to research in situ copper removal methods. Recent publications suggest that microorganism assisted phytoextraction, using plants and bacteria to actively extract copper, is most promising. As vineyards represent moderately polluted sites this technique has great potential. Active plant extraction and chelate assisted remediation extract too little copper or risk leaching, respectively. However, despite interesting pot experiment results using microorganism assisted phytoextraction, it remains a challenge to find plants that primarily accumulate copper in their shoots, a necessity in vineyards where whole plant removal would be time consuming and financially cumbersome. Vineyard remediation requires a holistic approach including sustainable soil management, proper plant selection, increasing biodiversity and microorganisms.
Collapse
Affiliation(s)
- K A Mackie
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, 27 Emil-Wolff-Straße, 70599 Stuttgart, Germany.
| | | | | |
Collapse
|
32
|
Brune KD, Bayer TS. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 2012; 3:203. [PMID: 22679443 PMCID: PMC3367458 DOI: 10.3389/fmicb.2012.00203] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/17/2012] [Indexed: 01/28/2023] Open
Abstract
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.
Collapse
Affiliation(s)
- Karl D Brune
- Centre for Synthetic Biology and Innovation, Division of Molecular Biosciences, Imperial College London, London, UK
| | | |
Collapse
|
33
|
|
34
|
Choudhary S, Islam E, Kazy SK, Sar P. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:622-37. [PMID: 22375546 DOI: 10.1080/10934529.2012.650584] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ten bacterial strains isolated from uranium mine wastes were characterized in terms of their uranium and other metal resistance and accumulation. 16S rRNA gene sequence analysis identified the strains as members of genera Bacillus, Serratia, and Arthrobacter. Strains were able to utilize various carbon sources, particularly aromatic hydrocarbons, grow at broad pH and temperature ranges and produce non specific acid phosphatase relevant for metal phosphate precipitation in contaminated environment. The isolates exhibited high uranium and other heavy metals (Ni, Co, Cu and Cd) resistance and accumulation capacities. Particularly, Arthrobacter sp. J001 and Bacillus sp. J003 were superior in terms of U resistance at low pH (pH 4.0) along with metals and actinides (U and Th) removal with maximum cell loading of 1088 μmol U, 1293 μmol Th, 425 μmol Cu, 305 μmol Cd, 377 μmol Zn, 250 μmol Ni g(-1) cell dry wt. Genes encoding P(1B)-type ATPases (Cu-CPx and Zn-CPx) and ABC transporters (nik) as catalytic tools for maintaining cellular metal homeostasis were detected within several Bacillus spp., with possible incidence of horizontal gene transfer for the later gene showing phylogenetic lineage to α Proteobacteria members. The study provides evidence on intrinsic abilities of indigenous bacteria from U-mine suitable for survival and cleaning up of contaminated mine sites.
Collapse
Affiliation(s)
- Sangeeta Choudhary
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | | | | | | |
Collapse
|
35
|
|
36
|
Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S. Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 2011; 157:473-81. [PMID: 22138043 DOI: 10.1016/j.jbiotec.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology.
Collapse
Affiliation(s)
- Francesca Mapelli
- Università degli Studi di Milano, Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol 2011; 52:296-305. [DOI: 10.1002/jobm.201100121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 11/06/2022]
|
38
|
Jose J, Giridhar R, Anas A, Loka Bharathi PA, Nair S. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2775-2780. [PMID: 21665339 DOI: 10.1016/j.envpol.2011.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning.
Collapse
Affiliation(s)
- Jiya Jose
- National Institute of Oceanography, CSIR, Regional Centre, PB 1913, Cochin, Kerala 682018, India
| | | | | | | | | |
Collapse
|
39
|
Elguindi J, Hao X, Lin Y, Alwathnani HA, Wei G, Rensing C. Advantages and challenges of increased antimicrobial copper use and copper mining. Appl Microbiol Biotechnol 2011; 91:237-49. [DOI: 10.1007/s00253-011-3383-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/24/2022]
|
40
|
Li K, Ramakrishna W. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:531-9. [PMID: 21420236 DOI: 10.1016/j.jhazmat.2011.02.075] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/29/2011] [Accepted: 02/22/2011] [Indexed: 05/08/2023]
Abstract
Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal solubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.
Collapse
Affiliation(s)
- Kefeng Li
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | |
Collapse
|
41
|
Lancaster WA, Praissman JL, Poole FL, Cvetkovic A, Menon AL, Scott JW, Jenney FE, Thorgersen MP, Kalisiak E, Apon JV, Trauger SA, Siuzdak G, Tainer JA, Adams MWW. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data. BMC Bioinformatics 2011; 12:64. [PMID: 21356119 PMCID: PMC3058030 DOI: 10.1186/1471-2105-12-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 02/28/2011] [Indexed: 12/02/2022] Open
Abstract
Background Metal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins. Results We demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions. Conclusions We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.
Collapse
Affiliation(s)
- W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|