1
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
2
|
Yoshida H, Izumori K, Yoshihara A. L-rhamnose isomerase: a crucial enzyme for rhamnose catabolism and conversion of rare sugars. Appl Microbiol Biotechnol 2024; 108:488. [PMID: 39412684 PMCID: PMC11485043 DOI: 10.1007/s00253-024-13325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
L-rhamnose isomerase (L-RhI) plays a key role in the microbial L-rhamnose metabolism by catalyzing the reversible isomerization of L-rhamnose to L-rhamnulose. Additionally, the enzyme exhibits activity on various other aldoses and ketoses, and its broad substrate specificity has attracted attention for its potential application in the production of rare sugars; however, improvement of the enzyme properties is desirable, such as thermal stability, enzymatic activity, and a pH optimum suitable for industrial usage. This review summarizes our current insights into L-RhIs with respect to their substrate recognition mechanism and their relationship with D-xylose isomerase (D-XI) based on structural and phylogenetic analyses. These two enzymes are inherently different, but recognize distinctly different substrates, and share common features that may be phylogenetically related. For example, they both have a flexible loop region that is involved in shaping active sites, and this region may also be responsible for various enzymatic properties of L-RhIs, such as substrate specificity and thermal stability. KEY POINTS: •L-RhIs share structural features with D-XI. •There are two types of L-RhIs: E. coli L-RhI-type and D-XI-type. •Flexible loop regions are involved in the specific enzyme properties.
Collapse
Affiliation(s)
- Hiromi Yoshida
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan.
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
3
|
Sharma S, Patel SN, Singh SP. A novel thermotolerant L-rhamnose isomerase variant for biocatalytic conversion of D-allulose to D-allose. Appl Microbiol Biotechnol 2024; 108:279. [PMID: 38564031 PMCID: PMC10987364 DOI: 10.1007/s00253-024-13074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.
Collapse
Affiliation(s)
- Sweety Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
- Indian Institute of Science Education and Research Mohali, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306.
| |
Collapse
|
4
|
Yoshida H, Yamamoto N, Kurahara LH, Izumori K, Yoshihara A. X-ray structure and characterization of a probiotic Lactobacillus rhamnosus Probio-M9 L-rhamnose isomerase. Appl Microbiol Biotechnol 2024; 108:249. [PMID: 38430263 PMCID: PMC10908623 DOI: 10.1007/s00253-024-13075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan.
| | - Naho Yamamoto
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
5
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
6
|
Duan S, Chen Y, Wang G, Li Z, Dong S, Wu Y, Wang Y, Ma C, Wang R. A study of targeted mutation of l-rhamnose isomerase to improve the conversion efficiency of D-allose. Enzyme Microb Technol 2023; 168:110259. [PMID: 37245327 DOI: 10.1016/j.enzmictec.2023.110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
D-Allose is a rare cis-caprose with a wide range of physiological functions, which has a wide range of applications in medicine, food, and other industries. L-Rhamnose isomerase (L-Rhi) is the earliest enzyme found to catalyze the production of D-allose from D-psicose. This catalyst has a high conversion rate, but its specificity for substrates is limited; thus, it cannot fulfill the requirements of industrial production of D-allose. In this study, L-Rhi derived from Bacillus subtilis was employed as the research subject, and D-psicose as the conversion substrate. Two mutant libraries were constructed through alanine scanning, saturation mutation, and rational design based on the analysis of the secondary structure, tertiary structure, and interactions with ligands of the enzyme. The yield of D-allose produced by these mutants was assessed; it was found that the conversion rate of mutant D325M to D-allose was increased by 55.73 %, and the D325S improved by 15.34 %, while mutant W184H increased by 10.37 % at 55 °C, respectively. According to modeling analysis, manganese (Mn2+) had no significant effect on the production of D-psicose from D-psicose by L-Rhi. The results of molecular dynamics simulation demonstrated that the mutants W184H, D325M, and D325S had more stable protein structures while binding with the substrate D-psicose, as evidenced by its root mean square deviation (RMSD), root mean square fluctuation (RMSF), and binding free energy values. It was more conducive to binding D-psicose and facilitating its conversion to D-allose, providing the basis for the production of D-allose.
Collapse
Affiliation(s)
- Shuangshuang Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yonghua Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Shitong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yingshuai Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yuanwei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| |
Collapse
|
7
|
Characterization of a Recombinant l-rhamnose Isomerase from Paenibacillus baekrokdamisoli to Produce d-allose from d-allulose. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Morimoto K, Suzuki T, Ikeda H, Nozaki C, Goto S. One-pot multi-step transformation of D-allose from D-fructose using a co-immobilized biocatalytic system. J GEN APPL MICROBIOL 2022; 68:1-9. [DOI: 10.2323/jgam.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Morimoto
- International Institute of Rare Sugar Research and Education, Kagawa University
| | | | | | | | | |
Collapse
|
9
|
Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2184-2193. [PMID: 28960307 DOI: 10.1002/jsfa.8703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. RESULTS The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg-1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L-1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L-1 l-mannose, respectively. CONCLUSION The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Characterization of L-rhamnose isomerase from Clostridium stercorarium and its application to the production of D-allose from D-allulose (D-psicose). Biotechnol Lett 2017; 40:325-334. [PMID: 29124517 DOI: 10.1007/s10529-017-2468-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To characterize L-rhamnose isomerase (L-RI) from the thermophilic bacterium Clostridium stercorarium and apply it to produce D-allose from D-allulose. RESULTS A recombinant L-RI from C. stercorarium exhibited the highest specific activity and catalytic efficiency (k cat/K m) for L-rhamnose among the reported L-RIs. The L-RI was applied to the high-level production of D-allose from D-allulose. The isomerization activity for D-allulose was maximal at pH 7, 75 °C, and 1 mM Mn2+ over 10 min reaction time. The half-lives of the L-RI at 65, 70, 75, and 80 °C were 22.8, 9.5, 1.9, and 0.2 h, respectively. To ensure full stability during 2.5 h incubation, the optimal temperature was set at 70 °C. Under the optimized conditions of pH 7, 70 °C, 1 mM Mn2+, 27 U L-RI l-1, and 600 g D-allulose l-1, L-RI from C. stercorarium produced 199 g D-allose l-1 without by-products over 2.5 h, with a conversion yield of 33% and a productivity of 79.6 g l-1 h-1. CONCLUSION To the best of our knowledge, this is the highest concentration and productivity of D-allose reported thus far.
Collapse
|
11
|
Kim YS, Kim DY, Park CS. Production of l-rhamnulose, a rare sugar, from l-rhamnose using commercial immobilized glucose isomerase. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1388374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yeong-Su Kim
- Division of Plant Resource Industry, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Do-Yeon Kim
- Department of Convergence Industrialization, International Ginseng and Herb Research Institute, Geumsan, South Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Catholic University of Daegu, Hayang, South Korea
| |
Collapse
|
12
|
Characterization of a novel thermostable l-rhamnose isomerase from Thermobacillus composti KWC4 and its application for production of d-allose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Xu W, Zhang W, Zhang T, Jiang B, Mu W. l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 2016; 100:2985-92. [DOI: 10.1007/s00253-016-7369-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
14
|
Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production. PLoS One 2015; 10:e0131585. [PMID: 26171785 PMCID: PMC4718643 DOI: 10.1371/journal.pone.0131585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8) was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P). The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications.
Collapse
|
15
|
Bai W, Shen J, Zhu Y, Men Y, Sun Y, Ma Y. Characteristics and Kinetic Properties of L-Rhamnose Isomerase from Bacillus Subtilis by Isothermal Titration Calorimetry for the Production of D-Allose. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wei Bai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Jie Shen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| |
Collapse
|
16
|
Prabhu P, Doan TNT, Tiwari M, Singh R, Kim SC, Hong MK, Kang YC, Kang LW, Lee JK. Structure-based studies on the metal binding of two-metal-dependent sugar isomerases. FEBS J 2014; 281:3446-59. [PMID: 24925069 DOI: 10.1111/febs.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Two-metal-dependent sugar isomerases are important in the synthesis of rare sugars. Many of their properties, specifically their metal dependency, have not been sufficiently explored. Here we used X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and electron paramagnetic resonance spectroscopy to investigate the molecular determinants of the metal-binding affinity of l-rhamnose isomerase, a two-Mn(2+) -dependent isomerase from Bacillus halodurans (BHRI). The crystal structure of BHRI confirmed the presence of two metal ion-binding sites: a structural metal ion-binding site for substrate binding, and a catalytic metal ion-binding site that catalyzes a hydride shift. One conserved amino acid, W38, in wild-type BHRI was identified as a critical residue for structural Mn(2+) binding and thus the catalytic efficiency of BHRI. This function of W38 was explored by replacing it with other amino acids. Substitution by Phe, His, Lys, Ile or Ala caused complete loss of catalytic activity. The role of W38 was further examined by analyzing the crystal structure of wild-type BHRI and two inactive mutants of BHRI (W38F and W38A) in complex with Mn(2+) . A structural comparison of the mutants and the wild-type revealed differences in their coordination of Mn(2+) , including changes in metal-ligand bond length and affinity for Mn(2+) . The role of W38 was further confirmed in another two-metal-dependent enzyme: xylose isomerase from Bacillus licheniformis. These data suggest that W38 stabilizes protein-metal complexes and in turn assists ligand binding during catalysis in two-metal-dependent isomerases. STRUCTURED DIGITAL ABSTRACT BHRI and BHRI bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Ponnandy Prabhu
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoshida H, Yoshihara A, Teraoka M, Yamashita S, Izumori K, Kamitori S. Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. FEBS Open Bio 2012; 3:35-40. [PMID: 23772372 PMCID: PMC3668531 DOI: 10.1016/j.fob.2012.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
l-Rhamnose isomerase (l-RhI) catalyzes the reversible isomerization of l-rhamnose to l-rhamnulose. Previously determined X-ray structures of l-RhI showed a hydride-shift mechanism for the isomerization of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant l-RhI in complex with l-rhamnopyranose and d-allopyranose. Results suggest that a catalytic water molecule, which acts as an acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different anomers of substrates.
Collapse
Key Words
- D327N, mutant P. stutzeril-RhI, with a substitution of Asp327 with Asn
- E. coli, Escherichia coli
- H101N, mutant P. stutzeril-RhI, with a substitution of H101 with Asn
- P. stutzeri, Pseudomonas stutzeri
- Pseudomonas stutzeri
- RNS, l-rhamnose in a linear form
- Rare sugar
- Sugar-ring opening mechanism
- X-ray structure
- l-RhI, l-rhamnose isomerase
- l-Rhamnose isomerase
- α-APS, α-d-allopyranose
- α-RPS, α-l-rhamnopyranose
- β-RPS, β-l-rhamnopyranose
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Characterization of a recombinant L-rhamnose isomerase from Dictyoglomus turgidum and its application for L-rhamnulose production. Biotechnol Lett 2012; 35:259-64. [PMID: 23070627 DOI: 10.1007/s10529-012-1069-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A putative recombinant enzyme from Dictyoglomus turgidum was characterized and immobilized on Duolite A568 beads. The native enzyme was a 46 kDa tetramer. Its activity was highest for L-rhamnose, indicating that it is an L-rhamnose isomerase. The maximum activities of both the free and immobilized enzymes for L-rhamnose isomerization were at pH 8.0 and 75 °C in the presence of Mn(2+). Under these conditions, the half-lives of the free and immobilized enzymes were 28 and 112 h, respectively. In a packed-bed bioreactor, the immobilized enzyme produced an average of 130 g L-rhamnulose l(-1) from 300 g L-rhamnose l(-1) after 240 h at pH 8.0, 70 °C, and 0.6 h(-1), with a productivity of 78 g l(-1) h(-1) and a conversion yield of 43 %. To the best of our knowledge, this is the first report describing the enzymatic production of L-rhamnulose.
Collapse
|
19
|
Fieseler L, Schmitter S, Teiserskas J, Loessner MJ. Rhamnose-inducible gene expression in Listeria monocytogenes. PLoS One 2012; 7:e43444. [PMID: 22927968 PMCID: PMC3425472 DOI: 10.1371/journal.pone.0043444] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/20/2012] [Indexed: 12/02/2022] Open
Abstract
Acid production from rhamnose is a characteristic phenotype of Listeria monocytogenes. We report the identification of the rhamnose transport and utilization operon located at lmo2846 to lmo2851, including the rhamnose-dependent promoter Prha. Expression of reporter genes under control of Prha on a single copy integration vector demonstrated its suitability for inducible gene expression in L. monocytogenes. Transcription initiation from Prha is dose dependent, and a concentration as low as 100 µM rhamnose was found sufficient for induction. Moreover, Prha is subject to glucose catabolite repression, which provides additional options for strict control of expression. Infection of human THP1 macrophages revealed that Prha is repressed in intracellular L. monocytogenes, which is explained by the absence of rhamnose in the cytosol and possible interference by catabolite repression. The Prha promoter provides a novel and useful tool for triggering gene expression in extracellular L. monocytogenes, whereas intracellular conditions prevent transcription from this promoter.
Collapse
Affiliation(s)
- Lars Fieseler
- Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland
| | - Sibylle Schmitter
- Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland
| | | | - Martin J. Loessner
- Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Lin CJ, Tseng WC, Fang TY. Characterization of a thermophilic L-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8702-8708. [PMID: 21761877 DOI: 10.1021/jf201428b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
L-Rhamnose isomerase (EC 5.3.1.14, l-RhI) catalyzes the reversible aldose-ketose isomerization between L-rhamnose and L-rhamnulose. In this study, the L-rhi gene encoding L-RhI was PCR-cloned from Caldicellulosiruptor saccharolyticus ATCC 43494 and then expressed in Escherichia coli. A high yield of active L-RhI, 3010 U/g of wet cells, was obtained after 20 °C induction for 20 h. The enzyme was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified L-RhI showed an apparent optimal pH of 7 and an optimal temperature at 90 °C. The enzyme was stable at pH values ranging from 4 to 11 and retained >90% activity after a 6 h incubation at 80 °C and pH 7-8. Compared with other previously characterized L-RhIs, the L-RhI from C. saccharolyticus ATCC 43494 has a good thermostability, the widest pH-stable range, and the highest catalytic efficiencies (k(cat)/K(M)) against L-rhamnose, L-lyxose, L-mannose, D-allose, and D-ribose, suggesting that this enzyme has the potential to be applied in rare sugar production.
Collapse
Affiliation(s)
- Chia-Jui Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | | | | |
Collapse
|
21
|
Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 2011; 91:229-35. [DOI: 10.1007/s00253-011-3370-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|