1
|
Pan R, Yuan Y, Xu A, Jiang W, Zhang W, Barriuso J, Jiang Y, Xin F, Jiang M. Biofilm engineering to improve succinic acid production in Escherichia coli by enhancing extracellular polysaccharide synthesis. BIORESOURCE TECHNOLOGY 2025; 431:132627. [PMID: 40324728 DOI: 10.1016/j.biortech.2025.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Biofilms play crucial roles in enhancing microbial tolerance to environmental stress. Biofilm engineering in industrial microorganisms has been a promising and efficient approach to improve the production of metabolites. In this study, the psl gene cluster from Pseudomonas aeruginosa, for extracellular polysaccharide synthesis, was first introduced in a succinic acid (SA) producing Escherichia coli strain to enhance the biofilm formation ability. The engineered strain Suc260 (pslA-J) showed the improved tolerance to harsh environments and improved SA synthesis capability. Compared to the control, strain Suc260 (pslA-J) produced 70.54 g/L of SA from glucose in a 5 L bioreactor, representing an increase of 13.41 %. To further enhance the synthesis efficiency of SA, a cell immobilization fermentation system based on biofilms on alginate beads was designed. Finally, 62.66 g/L of SA with a yield of 0.76 g/g was produced from wheat straw hydrolysate in a 5 L bioreactor at the optimal pH of 6.8. When the pH was adjusted to a lower value (pH 6.0), the SA production and yield still reached 57.67 g/L and 0.75 g/g, respectively, representing 28.96 % and 42.15 % higher than those of the control strain. This study provides an efficient platform technology for the production of bio-based SA in large scale.
Collapse
Affiliation(s)
- Runze Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yicheng Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| | - Jorge Barriuso
- Department of Biotechnology, Center for Biological Research Margarita Salas, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Academy of Chemical Inherent Safety, Nanjing 211800, PR China
| |
Collapse
|
2
|
Wang Z, Chen J, Veiga MC, Kennes C. Scalable propionic acid production using Cutibacterium acnes ZW-1: Insights into substrate and pH-driven carbon flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178806. [PMID: 39946891 DOI: 10.1016/j.scitotenv.2025.178806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
An acid-resistant Cutibacterium acnes ZW-1 was isolated from human skin, and propionic acid (PA) production under different substrate and pH conditions was studied. When the molar ratio of lactic acid (LA) to acetic acid (AA) was 7:1 and the pH was 6.5, the PA concentration could reach 64.84 mM. Meanwhile, the index analysis and enzyme activity revealed that the PA carbon flux was 59 %, the PA electronic efficiency reached 79 %, and the propionyl-CoA carboxylase activity was 1.075 mmol·mg protein-1. Considering the competition between AA/PA production and biomass synthesis, although the slightly acidic pH (<6.5) would promote the flow of carbon to PA, its concentration was severely inhibited due to the limitation of biomass. Further scale-up verification in an automated bioreactor indicated that PA production improved, up to 83.31 mM, and the production rate reached 1.066 g·L-1·d-1. This work may provide support for the industrial application of PA bioproduction.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain.
| |
Collapse
|
3
|
Lee H, Park S, Lee SB, Song J, Kim TH, Kim BG. Tailored biosynthesis of diosmin through reconstitution of the flavonoid pathway in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1464877. [PMID: 39494057 PMCID: PMC11527692 DOI: 10.3389/fpls.2024.1464877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
The flavonoid diosmin (diosmetin 7-O-rutinoside) is used as a therapeutic agent for disorders of the blood vessels such as hemorrhoids and varicose veins. Diosmin is commercially produced using semi-synthetic methods involving the oxidation of hesperidin, the most abundant flavonoid in citrus fruits. However, this method produces byproducts that are toxic to the environment, and new sustainable methods to produce diosmin are required. Here, we used a synthetic biology approach to produce diosmin without generating toxic byproducts through reconstitution of the diosmin biosynthetic pathway in Nicotiana benthamiana. We first established that N. benthamiana leaves co-infiltrated with all seven genes in the flavonoid biosynthesis pathway produced high levels of luteolin, a precursor of diosmetin. We then compared the activity of modification enzymes such as methyltransferases, glucosyltransferases, and rhamnosyltransferases in Escherichia coli and in planta and selected genes encoding enzymes with the highest activity for producing diosmetin, diosmetin 7-O-glucoside, and diosmin, respectively. Finally, we reconstructed the entire diosmin biosynthetic pathway using three constructs containing ten genes encoding enzymes in this pathway, from phenylalanine ammonia lyase to rhamnosyltransferase. N. benthamiana leaves transiently co-expressing all these genes yielded 37.7 µg diosmin per gram fresh weight. To our knowledge, this is the first report of diosmin production in a heterologous plant system without the supply of a precursor. Successful production of diosmin in N. benthamiana opens new avenues for producing other commercially important flavonoids using similar platforms.
Collapse
Affiliation(s)
- Hyo Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Sangkyu Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Williamson CHD, Vazquez AJ, Nunnally AE, Kyger K, Fofanov VY, Furstenau TN, Hornstra HM, Terriquez J, Keim P, Sahl JW. ColiSeq: a multiplex amplicon assay that provides strain level resolution of Escherichia coli directly from clinical specimens. Microbiol Spectr 2024; 12:e0413923. [PMID: 38651881 PMCID: PMC11237721 DOI: 10.1128/spectrum.04139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.
Collapse
Affiliation(s)
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kristen Kyger
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Viacheslav Y. Fofanov
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tara N. Furstenau
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Masaitis D, Urniezius R, Simutis R, Vaitkus V, Matukaitis M, Kemesis B, Galvanauskas V, Sinkevicius B. An Approach for the Estimation of Concentrations of Soluble Compounds in E. coli Bioprocesses. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1302. [PMID: 37761601 PMCID: PMC10527678 DOI: 10.3390/e25091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Accurate estimations of the concentrations of soluble compounds are crucial for optimizing bioprocesses involving Escherichia coli (E. coli). This study proposes a hybrid model structure that leverages off-gas analysis data and physiological parameters, including the average biomass age and specific growth rate, to estimate soluble compounds such as acetate and glutamate in fed-batch cultivations We used a hybrid recurrent neural network to establish the relationships between these parameters. To enhance the precision of the estimates, the model incorporates ensemble averaging and information gain. Ensemble averaging combines varying model inputs, leading to more robust representations of the underlying dynamics in E. coli bioprocesses. Our hybrid model estimates acetates with 1% and 8% system precision using data from the first site and the second site at GSK plc, respectively. Using the data from the second site, the precision of the approach for other solutes was as fallows: isoleucine -8%, lactate and glutamate -9%, and a 13% error for glutamine., These results, demonstrate its practical potential.
Collapse
Affiliation(s)
| | - Renaldas Urniezius
- Department of Automation, Kaunas University of Technology, LT-51367 Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
6
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Liu J, Wang K, Wang M, Deng H, Chen X, Shang Y, Liu X, Yu X. Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. Enzyme Microb Technol 2022; 160:110100. [PMID: 35872508 DOI: 10.1016/j.enzmictec.2022.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 ℃, and the space-time yield reached 0.478 mM·L-1·h-1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.
Collapse
Affiliation(s)
- Jinbin Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Kaipeng Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Mian Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Xiaodong Chen
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaochen Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
8
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
9
|
Rathod JP, Vira C, Lali AM, Prakash G. Heterologous mannitol-1-phosphate dehydrogenase gene over-expression in Parachlorella kessleri for enhanced microalgal biomass productivity. J Genet Eng Biotechnol 2022; 20:38. [PMID: 35226194 PMCID: PMC8885943 DOI: 10.1186/s43141-022-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
Abstract
Background Microalgae have tremendous potential in CO2 sequestration, bioenergy, biofuels, wastewater treatment, and high-value metabolites production. However, large-scale production of microalgae is hampered due to photo-inhibition in outdoor cultivation. Mannitol, as an osmolyte, is known to relieve the stress produced under different abiotic stress conditions during the growth of a photosynthetic organism. Results In the present study, Mannitol-1-phosphate 5-dehydrogenase (Mt1D) was over-expressed to study the effect of mannitol over-production in Parachlorella kessleri under high-light induced stress. Over-expression of Mt1D led to 65% increased mannitol content in the transformed P. kessleri compared to that of wild type. Mannitol transformant demonstrated > 20-fold reduction in reactive oxygen species generation and 15% higher biomass productivity when grown in outdoor cultivation with high-light irradiance of 1200 μmol photons m−2 s−1. Conclusions The current study establishes that a higher mannitol concentration provides stress shielding and leads to better acclimatization of transgenic microalgae against high-light generated stress. It also led to reduced ROS generation and improved growth of microalga under study. Thus, overexpression of the Mt1D gene in microalgae can be a suitable strategy to combat high-light stress.
Collapse
Affiliation(s)
- Jayant Pralhad Rathod
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,ADT's Shardabai Pawar Mahila Arts, Commerce & Science College, Baramati, Maharashtra, India
| | - Chaitali Vira
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind M Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
10
|
Takahashi S, Miyachi M, Tamaki H, Suzuki H. The Escherichia coli CitT transporter can be used as a succinate exporter for succinate production. Biosci Biotechnol Biochem 2021; 85:981-988. [PMID: 33590847 DOI: 10.1093/bbb/zbaa109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022]
Abstract
Escherichia coli strain, whose gene is one of the subunits of succinate dehydrogenase (sdhA), and gene of the transcriptional repressor of isocitrate lyase (iclR) were disrupted, accumulated 6.6 times as much intracellular succinate as the wild-type MG1655 strain in aerobic growth, but succinate was not found in the culture medium. E. coli citT gene that encodes a citrate transporter was cloned under the control of the lacI promoter in pBR322-based plasmid and the above strain was transformed. This transformant, grown under aerobic condition in M9-tryptone medium with citrate, accumulated succinate in the medium while no succinate was found in the medium without citrate. CitT was active as a succinate transporter for 168 h by changing the culture medium or for 24 h in fed-batch culture. This study suggests that the CitT transporter functions as a succinate exporter in E. coli for succinate production in the presence of citrate.
Collapse
Affiliation(s)
- Sousuke Takahashi
- Division of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Mayu Miyachi
- Division of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Hisanori Tamaki
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
11
|
Wei PP, Zhu FC, Chen CW, Li GS. Engineering a heterologous synthetic pathway in Escherichia coli for efficient production of biotin. Biotechnol Lett 2021; 43:1221-1228. [PMID: 33666816 DOI: 10.1007/s10529-021-03108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To enhance biotin production in Escherichia coli by engineering a heterologous biotin synthetic pathway. RESULTS Biotin operon genes from Pseudomonas putida, which consisted of a bioBFHCD cluster and a bioA gene, was engineered into Escherichia coli for biotin production. The introduction of bioW gene from Bacillus subtilis, encoding pimeloyl-CoA synthetase and sam2 gene from Saccharomyces cerevisiae, encoding S-adenosyl-L-methionine (SAM) synthetase contributed to the heterologous production of biotin in recombinant E. coli. Furthermore, biotin production was efficiently enhanced by optimization of the fermentation compositions, especially pimelic acid and L-methionine, the precursor related to the pimeloyl-CoA and SAM synthesis, respectively. The combination of overexpression of the heterologous biotin operon genes and enhanced supply of key intermediate pimeloyl-CoA and SAM increased biotin production in E. coli by more than 121-fold. With bioprocess engineering efforts, biotin was produced at a final titer of 92.6 mg/L in a shake flask and 208.7 mg/L in a fed-batch fermenter. CONCLUSION Through introduction of heterologous biotin synthetic pathway, increasing the supply of precursor pimeloyl-CoA and cofactor SAM can significantly enhance biotin production in E. coli.
Collapse
Affiliation(s)
- Pei-Pei Wei
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Fu-Cheng Zhu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Cun-Wu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Guo-Si Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China.
| |
Collapse
|
12
|
Bañares AB, Nisola GM, Valdehuesa KNG, Lee WK, Chung WJ. Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds. Crit Rev Biotechnol 2021; 41:649-668. [PMID: 33563072 DOI: 10.1080/07388551.2021.1873243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lignocellulosic sugar d-xylose has recently gained prominence as an inexpensive alternative substrate for the production of value-added compounds using genetically modified organisms. Among the prokaryotes, Escherichia coli has become the de facto host for the development of engineered microbial cell factories. The favored status of E. coli resulted from a century of scientific explorations leading to a deep understanding of its systems. However, there are limited literature reviews that discuss engineered E. coli as a platform for the conversion of d-xylose to any target compounds. Additionally, available critical review articles tend to focus on products rather than the host itself. This review aims to provide relevant and current information about significant advances in the metabolic engineering of d-xylose metabolism in E. coli. This focusses on unconventional and synthetic d-xylose metabolic pathways as several review articles have already discussed the engineering of native d-xylose metabolism. This paper, in particular, is essential to those who are working on engineering of d-xylose metabolism using E. coli as the host.
Collapse
Affiliation(s)
- Angelo B Bañares
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Grace M Nisola
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Kris N G Valdehuesa
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi, South Korea
| | - Wook-Jin Chung
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| |
Collapse
|
13
|
Fox KJ, Prather KLJ. Production of D-Glyceric acid from D-Galacturonate in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:1075-1081. [PMID: 33057913 DOI: 10.1007/s10295-020-02323-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
A microbial production platform has been developed in Escherichia coli to synthesize D-glyceric acid from D-galacturonate. The expression of uronate dehydrogenase (udh) from Pseudomonas syringae and galactarolactone isomerase (gli) from Agrobacterium fabrum, along with the inactivation of garK, encoding for glycerate kinase, enables D-glyceric acid accumulation by utilizing the endogenous expression of galactarate dehydratase (garD), 5-keto-4-deoxy-D-glucarate aldolase (garL), and 2-hydroxy-3-oxopropionate reductase (garR). Optimization of carbon flux through the elimination of competing metabolic pathways led to the development of a ΔgarKΔhyiΔglxKΔuxaC mutant strain that produced 4.8 g/l of D-glyceric acid from D-galacturonate, with an 83% molar yield. Cultivation in a minimal medium produced similar yields and demonstrated that galactose or glycerol serve as possible carbon co-feeds for industrial production. This novel platform represents an alternative for the production of D-glyceric acid, an industrially relevant chemical, that addresses current challenges in using acetic acid bacteria for its synthesis: increasing yield, enantio-purity and biological stability.
Collapse
Affiliation(s)
- Kevin J Fox
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
15
|
Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun 2020; 11:279. [PMID: 31937786 PMCID: PMC6959354 DOI: 10.1038/s41467-019-14024-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Glucose and xylose are the major components of lignocellulose. Effective utilization of both sugars can improve the efficiency of bioproduction. Here, we report a method termed parallel metabolic pathway engineering (PMPE) for producing shikimate pathway derivatives from glucose–xylose co-substrate. In this method, we seek to use glucose mainly for target chemical production, and xylose for supplying essential metabolites for cell growth. Glycolysis and the pentose phosphate pathway are completely separated from the tricarboxylic acid (TCA) cycle. To recover cell growth, we introduce a xylose catabolic pathway that directly flows into the TCA cycle. As a result, we can produce 4.09 g L−1cis,cis-muconic acid using the PMPE Escherichia coli strain with high yield (0.31 g g−1 of glucose) and produce l-tyrosine with 64% of the theoretical yield. The PMPE strategy can contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources. In lignocellulose biomass, microbes prefer consuming glucose over xylose, which affects target compound production. Here, the authors achieve simultaneous utilization of glucose and xylose for target chemical production and cell growth, respectively, and realize high-level production of shikimate pathway derivatives.
Collapse
|
16
|
Valle A, Cantero D, Bolívar J. Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review. Biotechnol Adv 2019; 37:616-633. [DOI: 10.1016/j.biotechadv.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022]
|
17
|
Biochemical and Metabolic Implications of Tricarboxylic Acids and their Transporters. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Wang Y, Zhang H, Lu X, Zong H, Zhuge B. Advances in 2-phenylethanol production from engineered microorganisms. Biotechnol Adv 2019; 37:403-409. [DOI: 10.1016/j.biotechadv.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
|
19
|
Liu J, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3498-3504. [PMID: 29560727 DOI: 10.1021/acs.jafc.8b00627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1T , U.K
| | - Ye Zhao
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shanxi 710069 , China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
20
|
Kadoya R, Matsumoto K, Takisawa K, Ooi T, Taguchi S. Enhanced production of lactate-based polyesters in Escherichia coli from a mixture of glucose and xylose by Mlc-mediated catabolite derepression. J Biosci Bioeng 2018; 125:365-370. [DOI: 10.1016/j.jbiosc.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
|
21
|
Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Numata K, Summers DK. Efficient 3-Hydroxybutyrate Production by QuiescentEscherichia coliMicrobial Cell Factories is Facilitated by Indole-Induced Proteomic and Metabolomic Changes. Biotechnol J 2018; 13:e1700571. [DOI: 10.1002/biot.201700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Nicholas M. Thomson
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| | - Tomokazu Shirai
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | - Marco Chiapello
- Cambridge Centre for Proteomics; University of Cambridge; Cambridge CB2 1QR UK
| | - Akihiko Kondo
- Cell Factory Research Team; RIKEN Centre for Sustainable Resource Science; Yokohama 230-0045 Japan
| | | | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Kyoto 606-8501 Japan
| | - Keiji Numata
- Enzyme Research Team; RIKEN Centre for Sustainable Resource Science; Wako-shi 351-0198 Japan
| | - David K. Summers
- Department of Genetics; University of Cambridge; Cambridge CB2 3EH UK
| |
Collapse
|
22
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
23
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Chang P, Chen GS, Chu HY, Lu KW, Shen CR. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 2017; 249:73-81. [DOI: 10.1016/j.jbiotec.2017.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
|
25
|
Gregory GL, López-Vidal EM, Buchard A. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chem Commun (Camb) 2017; 53:2198-2217. [DOI: 10.1039/c6cc09578j] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article gives an overview of sugar-based polymers that can be made by ring-opening-polymerisation and their applications.
Collapse
|
26
|
Min BE, Hwang HG, Lim HG, Jung GY. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators. ACTA ACUST UNITED AC 2017; 44:89-98. [DOI: 10.1007/s10295-016-1867-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022]
Abstract
Abstract
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.
Collapse
Affiliation(s)
- Byung Eun Min
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Hyun Gyu Hwang
- grid.49100.3c 0000000107424007 School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Hyun Gyu Lim
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Gyoo Yeol Jung
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
- grid.49100.3c 0000000107424007 School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| |
Collapse
|
27
|
Application of theoretical methods to increase succinate production in engineered strains. Bioprocess Biosyst Eng 2016; 40:479-497. [PMID: 28040871 DOI: 10.1007/s00449-016-1729-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022]
Abstract
Computational methods have enabled the discovery of non-intuitive strategies to enhance the production of a variety of target molecules. In the case of succinate production, reviews covering the topic have not yet analyzed the impact and future potential that such methods may have. In this work, we review the application of computational methods to the production of succinic acid. We found that while a total of 26 theoretical studies were published between 2002 and 2016, only 10 studies reported the successful experimental implementation of any kind of theoretical knowledge. None of the experimental studies reported an exact application of the computational predictions. However, the combination of computational analysis with complementary strategies, such as directed evolution and comparative genome analysis, serves as a proof of concept and demonstrates that successful metabolic engineering can be guided by rational computational methods.
Collapse
|
28
|
Yang Z, Gao X, Xie H, Wang F, Ren Y, Wei D. Enhanced itaconic acid production by self-assembly of two biosynthetic enzymes in Escherichia coli. Biotechnol Bioeng 2016; 114:457-462. [DOI: 10.1002/bit.26081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Zhongwei Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Xin Gao
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Hui Xie
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
29
|
Affiliation(s)
- Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica. Appl Microbiol Biotechnol 2016; 100:9875-9884. [DOI: 10.1007/s00253-016-7913-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
|
31
|
Abstract
Cofactor engineering has been long identified as a valuable tool for metabolic engineering. Besides interventions targeting the pools of redox cofactors, many studies addressed the adenosine pools of microorganisms. In this mini-review, we discuss interventions that manipulate the availability of ATP with a special focus on ATP wasting strategies. We discuss the importance to fine-tune the ATP yield along a production pathway to balance process performance parameters like product yield and volumetric productivity.
Collapse
|
32
|
Srirangan K, Bruder M, Akawi L, Miscevic D, Kilpatrick S, Moo-Young M, Chou CP. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels. Crit Rev Biotechnol 2016; 37:701-722. [PMID: 27557613 DOI: 10.1080/07388551.2016.1216391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].
Collapse
Affiliation(s)
| | - Mark Bruder
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Lamees Akawi
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Dragan Miscevic
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Shane Kilpatrick
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Murray Moo-Young
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - C Perry Chou
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| |
Collapse
|
33
|
Miklóssy I, Bodor Z, Sinkler R, Orbán KC, Lányi S, Albert B. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. J Biomol Struct Dyn 2016; 35:1874-1889. [PMID: 27492654 DOI: 10.1080/07391102.2016.1198721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, several approaches have been published in order to develop a functional biosynthesis route for the non-natural compound 1,4-butanediol (BDO) in E. coli using glucose as a sole carbon source or starting from xylose. Among these studies, there was reported as high as 18 g/L product concentration achieved by industrial strains, however BDO production varies greatly in case of the reviewed studies. Our motivation was to build a simple heterologous pathway for this compound in E. coli and to design an appropriate cellular chassis based on a systemic biology approach, using constraint-based flux balance analysis and bi-level optimization for gene knock-out prediction. Thus, the present study reports, at the "proof-of concept" level, our findings related to model-driven development of a metabolically engineered E. coli strain lacking key genes for ethanol, lactate and formate production (ΔpflB, ΔldhA and ΔadhE), with a three-step biosynthetic pathway. We found this strain to produce a limited quantity of 1,4-BDO (.89 mg/L BDO under microaerobic conditions and .82 mg/L under anaerobic conditions). Using glycerol as carbon source, an approach, which to our knowledge has not been tackled before, our results suggest that further metabolic optimization is needed (gene-introductions or knock-outs, promoter fine-tuning) to address the redox potential imbalance problem and to achieve development of an industrially sustainable strain. Our experimental data on culture conditions, growth dynamics and fermentation parameters can consist a base for ongoing research on gene expression profiles and genetic stability of such metabolically engineered E. coli strains.
Collapse
Affiliation(s)
- Ildikó Miklóssy
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania.,b Faculty of Applied Chemistry and Materials Science , Politehnica University of Bucharest , Bucharest , Romania
| | - Zsolt Bodor
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Réka Sinkler
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania.,b Faculty of Applied Chemistry and Materials Science , Politehnica University of Bucharest , Bucharest , Romania
| | - Kálmán Csongor Orbán
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Szabolcs Lányi
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| | - Beáta Albert
- a Department of Bioengineering , Sapientia Hungarian University of Transylvania , Libertatii Square, no. 1, 530104 Miercurea Ciuc , Romania
| |
Collapse
|
34
|
Wang J, Lin M, Xu M, Yang ST. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:323-361. [DOI: 10.1007/10_2015_5009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Deng Y, Ma L, Mao Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Jung IY, Lee JW, Min WK, Park YC, Seo JH. Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis. BIORESOURCE TECHNOLOGY 2015; 198:709-16. [PMID: 26441028 DOI: 10.1016/j.biortech.2015.09.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 05/16/2023]
Abstract
Escherichia coli expressing the Lactobacillus brevis dhaB1B2B3 and dhaR1R2 clusters and Pseudomonas aeruginosa aldhH was engineered to produce 3-HP from glucose and xylose via the glycerol biosynthetic pathway. Glycerol, a key precursor for 3-HP biosynthesis was produced by overexpression of the GPD1 and GPP2 genes from Saccharomyces cerevisiae. For relief of carbon catabolite repression, deletion of the chromosomal ptsG gene and overexpression of the endogenous xylR gene rendered engineered E. coli JHS01300/pCPaGGRm to utilize glucose and xylose simultaneously and to produce glycerol at 0.48 g/g yield and 0.35 g/L-h productivity. Finally, engineered E. coli JHS01300/pELDRR+pCPaGGRm produced 29.4 g/L of 3-HP with 0.54 g/L-h productivity and 0.36 g/g yield in a sugar-limited fed-batch fermentation. It was concluded that dual modulation of sugar transport and glycerol biosynthesis is a promising strategy for efficient conversion of glucose and xylose to 3-HP.
Collapse
Affiliation(s)
- In-Young Jung
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jong-Won Lee
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won-Ki Min
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
37
|
Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JPM, Weusthuis RA. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express 2015; 5:61. [PMID: 26384341 PMCID: PMC4573741 DOI: 10.1186/s13568-015-0147-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022] Open
Abstract
Itaconic acid, an unsaturated C5-dicarboxylic acid, is a biobased building block for the polymer industry. The purpose of this study was to establish proof of principle for an anaerobic fermentation process for the production of itaconic acid by modification of the mixed acid fermentation pathway of E. coli. E. coli BW25113 (DE3) and the phosphate acetyltransferase (pta) and lactate dehydrogenase (ldhA) deficient strain E. coli BW25113 (DE3) Δpta-ΔldhA were used to study anaerobic itaconate production in E. coli. Heterologous expression of the gene encoding cis-aconitate decarboxylase (cadA) from A. terreus in E. coli BW25113 (DE3) did not result in itaconate production under anaerobic conditions, but 0.08 mM of itaconate was formed when the genes encoding citrate synthase (gltA) and aconitase (acnA) from Corynebacterium glutamicum were also expressed. The same amount was produced when cadA was expressed in E. coli BW25113 (DE3) Δpta-ΔldhA. The titre increased 8 times to 0.66 mM (1.2 % Cmol) when E. coli BW25113 (DE3) Δpta-ΔldhA also expressed gltA and acnA. In addition, this strain produced 8.5 mM (13 % Cmol) of glutamate. The use of a nitrogen-limited growth medium reduced the accumulation of glutamate by nearly 50 % compared to the normal medium, and also resulted in a more than 3-fold increase of the itaconate titre to 2.9 mM. These results demonstrated that E. coli has potential to produce itaconate and glutamate under anaerobic conditions, closing the redox balance by co-production of succinate or ethanol with H2 and CO2.
Collapse
|
38
|
Wang ZW, Saini M, Lin LJ, Chiang CJ, Chao YP. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9583-9. [PMID: 26477354 DOI: 10.1021/acs.jafc.5b04162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.
Collapse
Affiliation(s)
- Zei Wen Wang
- Department of Chemical Engineering, Feng Chia University , 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Mukesh Saini
- Department of Chemical Engineering, Feng Chia University , 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University , Taichung 40402, Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University , No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University , 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 40447, Taiwan
| |
Collapse
|
39
|
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 2015; 33:830-41. [DOI: 10.1016/j.biotechadv.2015.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/15/2023]
|
40
|
Su B, Wu M, Zhang Z, Lin J, Yang L. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 2015. [DOI: 10.1016/j.ymben.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. J Biosci Bioeng 2015; 119:548-53. [DOI: 10.1016/j.jbiosc.2014.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
|
42
|
Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:532-546. [PMID: 25641561 PMCID: PMC4515103 DOI: 10.1111/tpj.12781] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach.
Collapse
Affiliation(s)
- Mark A Scaife
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
- *For correspondence (e-mails or )
| | - Ginnie TDT Nguyen
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Juan Rico
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Devinn Lambert
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Katherine E Helliwell
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Science, University of CambridgeDowning Street, Cambridge, CB2 3EA, UK
- *For correspondence (e-mails or )
| |
Collapse
|
43
|
Sonntag F, Müller JEN, Kiefer P, Vorholt JA, Schrader J, Buchhaupt M. High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains. Appl Microbiol Biotechnol 2015; 99:3407-19. [PMID: 25661812 DOI: 10.1007/s00253-015-6418-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 11/26/2022]
Abstract
Bio-based production of dicarboxylic acids is an emerging research field with remarkable progress during the last decades. The recently established synthesis of the ethylmalonyl-CoA pathway (EMCP)-derived dicarboxylic acids, mesaconic acid and (2S)-methylsuccinic acid, from the alternative carbon source methanol (Sonntag et al., Appl Microbiol Biotechnol 98:4533-4544, 2014) gave a proof of concept for the sustainable production of hitherto biotechnologically inaccessible monomers. In this study, substantial optimizations of the process by different approaches are presented. Abolishment of mesaconic and (2S)-methylsuccinic acid reuptake from culture supernatant and a productivity increase were achieved by 30-fold decreased sodium ion availability in culture medium. Undesired flux from EMCP into polyhydroxybutyrate (PHB) cycle was hindered by the knockout of polyhydroxyalkanoate synthase phaC which was concomitant with 5-fold increased product concentrations. However, frequently occurring suppressors of strain ΔphaC lost their beneficial properties probably due to redirected channeling of acetyl-CoA. Pool sizes of the product precursors were increased by exploiting the presence of two cobalt-dependent mutases in the EMCP: Fine-tuned growth-limiting cobalt concentrations led to 16-fold accumulation of mesaconyl- and (2S)-methylsuccinyl-CoA which in turn resulted in 6-fold increased concentrations of mesaconic and (2S)-methylsuccinic acids, with a combined titer of 0.65 g/l, representing a yield of 0.17 g/g methanol. This work represents an important step toward an industrially relevant production of ethylmalonyl-CoA pathway-derived dicarboxylic acids and the generation of a stable PHB synthesis negative Methylobacterium extorquens strain.
Collapse
Affiliation(s)
- Frank Sonntag
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Bart JCJ, Cavallaro S. Transiting from Adipic Acid to Bioadipic Acid. Part II. Biosynthetic Pathways. Ind Eng Chem Res 2015. [DOI: 10.1021/ie502074d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan C. J. Bart
- Dipartimento di Ingegneria
Elettronica, Chimica e Ingegneria Industriale dell’Università di Messina, Viale F. Stagno D’Alcontres, 31-98166 Sant’Agata di
Messina, Italy
| | - Stefano Cavallaro
- Dipartimento di Ingegneria
Elettronica, Chimica e Ingegneria Industriale dell’Università di Messina, Viale F. Stagno D’Alcontres, 31-98166 Sant’Agata di
Messina, Italy
| |
Collapse
|
45
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
46
|
Chen Z, Geng F, Zeng AP. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol J 2014; 10:284-9. [DOI: 10.1002/biot.201400235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/25/2014] [Accepted: 06/06/2014] [Indexed: 01/25/2023]
|
47
|
Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JPM, Weusthuis RA. Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol 2014; 99:221-8. [PMID: 25277412 DOI: 10.1007/s00253-014-6092-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022]
Abstract
Interest in sustainable development has led to efforts to replace petrochemical-based monomers with biomass-based ones. Itaconic acid, a C5-dicarboxylic acid, is a potential monomer for the chemical industry with many prospective applications. cis-aconitate decarboxylase (CadA) is the key enzyme of itaconate production, converting the citric acid cycle intermediate cis-aconitate into itaconate. Heterologous expression of cadA from Aspergillus terreus in Escherichia coli resulted in low CadA activities and production of trace amounts of itaconate on Luria-Bertani (LB) medium (<10 mg/L). CadA was primarily present as inclusion bodies, explaining the low activity. The activity was significantly improved by using lower cultivation temperatures and mineral medium, and this resulted in enhanced itaconate titres (240 mg/L). The itaconate titre was further increased by introducing citrate synthase and aconitase from Corynebacterium glutamicum and by deleting the genes encoding phosphate acetyltransferase and lactate dehydrogenase. These deletions in E. coli's central metabolism resulted in the accumulation of pyruvate, which is a precursor for itaconate biosynthesis. As a result, itaconate production in aerobic bioreactor cultures was increased up to 690 mg/L. The maximum yield obtained was 0.09 mol itaconate/mol glucose. Strategies for a further improvement of itaconate production are discussed.
Collapse
Affiliation(s)
- Kiira S Vuoristo
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
48
|
Ma X, Zhang X, Wang B, Mao Y, Wang Z, Chen T, Zhao X. Engineering microorganisms based on molecular evolutionary analysis: a succinate production case study. Evol Appl 2014; 7:913-20. [PMID: 25469170 PMCID: PMC4211721 DOI: 10.1111/eva.12186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/09/2014] [Indexed: 02/02/2023] Open
Abstract
Evolution has resulted in thousands of species possessing similar metabolic enzymes with identical functions that are, however, regulated by different mechanisms. It is thus difficult to select optimal gene to engineer novel or manipulated metabolic pathways. Here, we tested the ability of molecular evolutionary analysis to identify appropriate genes from various species. We calculated the fraction of synonymous substitution and the effective number of codons (ENC) for nine genes stemming from glycolysis. Our research indicated that an enzyme gene with a stronger selective constraint in synonymous sites would mainly regulate corresponding reaction flux through altering the concentration of the protein, whereas those with a more relaxed selective constraint would primarily affect corresponding reaction flux by changing kinetic properties of the enzyme. Further, molecular evolutionary analysis was investigated for three types of genes involved in succinate precursor supply by catalysis of pyruvate. In this model, overexpression of Corynebacterium glutamicum pyc should result in greater conversion of pyruvate. Succinate yields in two Escherichia coli strains that overexpressed each of the three types of genes supported the molecular evolutionary analysis. This approach may thus provide an alternative strategy for selecting genes from different species for metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Xianghui Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Xinbo Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian UniversityTianjin, China
- Tianjin Key Laboratory of Aquatic Science and TechnologyTianjin, China
| | - Baiyun Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Yufeng Mao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Xueming Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| |
Collapse
|
49
|
Alonso S, Rendueles M, Díaz M. Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 2014; 35:497-513. [DOI: 10.3109/07388551.2014.904269] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Ryu YS, Biswas RK, Shin K, Parisutham V, Kim SM, Lee SK. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. PLoS One 2014; 9:e94266. [PMID: 24747264 PMCID: PMC3991648 DOI: 10.1371/journal.pone.0094266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/13/2014] [Indexed: 11/25/2022] Open
Abstract
Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.
Collapse
Affiliation(s)
- Young Shin Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Rajesh Kumar Biswas
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kwangsu Shin
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Vinuselvi Parisutham
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|