1
|
Liang Y, Lu Q, Liang Z, Liu X, Fang W, Liang D, Kuang J, Qiu R, He Z, Wang S. Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration. ISME COMMUNICATIONS 2021; 1:23. [PMID: 37938613 PMCID: PMC9723705 DOI: 10.1038/s43705-021-00025-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 05/19/2023]
Abstract
Obligate and non-obligate organohalide-respiring bacteria (OHRB) play central roles in the geochemical cycling and environmental bioremediation of organohalides. Their coexistence and interactions may provide functional redundancy and community stability to assure organohalide respiration efficiency but, at the same time, complicate isolation and characterization of specific OHRB. Here, we employed a growth rate/yield tradeoff strategy to enrich and isolate a rare non-obligate tetrachloroethene (PCE)-respiring Geobacter from a Dehalococcoides-predominant microcosm, providing experimental evidence for the rate/yield tradeoff theory in population selection. Surprisingly, further physiological and genomic characterizations, together with co-culture experiments, revealed three unique interactions (i.e., free competition, conditional competition and syntrophic cooperation) between Geobacter and Dehalococcoides for their respiration of PCE and polychlorinated biphenyls (PCBs), depending on both the feeding electron donors (acetate/H2 vs. propionate) and electron acceptors (PCE vs. PCBs). This study provides the first insight into substrate-dependent interactions between obligate and non-obligate OHRB, as well as a new strategy to isolate fastidious microorganisms, for better understanding of the geochemical cycling and bioremediation of organohalides.
Collapse
Affiliation(s)
- Yongyi Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Xiaokun Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, China
| | - Jialiang Kuang
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Hellal J, Joulian C, Urien C, Ferreira S, Denonfoux J, Hermon L, Vuilleumier S, Imfeld G. Chlorinated ethene biodegradation and associated bacterial taxa in multi-polluted groundwater: Insights from biomolecular markers and stable isotope analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142950. [PMID: 33127155 DOI: 10.1016/j.scitotenv.2020.142950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated ethenes (CEs) are most problematic pollutants in groundwater. Dehalogenating bacteria, and in particular organohalide-respiring bacteria (OHRB), can transform PCE to ethene under anaerobic conditions, and thus contribute to bioremediation of contaminated sites. Current approaches to characterize in situ biodegradation of CEs include hydrochemical analyses, quantification of the abundance of key species (e.g. Dehalococcoides mccartyi) and dehalogenase genes (pceA, vcrA, bvcA and tceA) involved in different steps of organohalide respiration (OHR) by qPCR, and compound-specific isotope analysis (CSIA) of CEs. Here we combined these approaches with sequencing of 16S rRNA gene amplicons to consider both OHRB and bacterial taxa involved in CE transformation at a multi-contaminated site. Integrated analysis of hydrogeochemical characteristics, gene abundances and bacterial diversity shows that bacterial diversity and OHRB mainly correlated with hydrogeochemical conditions, suggesting that pollutant exposure acts as a central driver of bacterial diversity. CSIA, abundances of four reductive dehalogenase encoding genes and the prevalence of Dehalococcoides highlighted sustained PCE, DCE and VC degradation in several wells of the polluted plume. These results suggest that bacterial taxa associated with OHR play an essential role in natural attenuation of CEs, and that representatives of taxa including Dehalobacterium and Desulfosporosinus co-occur with Dehalococcoides. Overall, our study emphasizes the benefits of combining several approaches to evaluate the interplay between the dynamics of bacterial diversity in CE-polluted plumes and in situ degradation of CEs, and to contribute to a more robust assessment of natural attenuation at multi-polluted sites.
Collapse
Affiliation(s)
- Jennifer Hellal
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France.
| | - Catherine Joulian
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France
| | - Charlotte Urien
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Stéphanie Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Jérémie Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Louis Hermon
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France; Université de Strasbourg, CNRS, GMGM UMR 7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Murray A, Maillard J, Rolle M, Broholm M, Holliger C. Impact of iron- and/or sulfate-reduction on a cis-1,2-dichloroethene and vinyl chloride respiring bacterial consortium: experiments and model-based interpretation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:740-750. [PMID: 32003373 DOI: 10.1039/c9em00544g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Process understanding of microbial communities containing organohalide-respiring bacteria (OHRB) is important for effective bioremediation of chlorinated ethenes. The impact of iron and sulfate reduction on cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) dechlorination by a consortium containing the OHRB Dehalococcoides spp. was investigated using multiphase batch experiments. The OHRB consortium was found to contain endogenous iron- and sulfate-reducing bacteria (FeRB and SRB). A biogeochemical model was developed and used to quantify the mass transfer, aquatic geochemical, and microbial processes that occurred in the multiphase batch system. It was determined that the added SRB had the most significant impact on contaminant degradation. Addition of the SRB increased maximum specific substrate utilization rates, kmax, of cDCE and VC by 129% and 294%, respectively. The added FeRB had a slight stimulating effect on VC dechlorination when exogenous SRB were absent, but when cultured with the added SRB, FeRB moderated the SRB's stimulating effect. This study demonstrates that subsurface microbial community interactions are more complex than categorical, guild-based competition for resources such as electron donor.
Collapse
Affiliation(s)
- Alexandra Murray
- Department of Environmental Engineering, Technical University of Denmark, Bld 115, 2800 Lyngby, DK-2800, Denmark.
| | | | | | | | | |
Collapse
|
4
|
Chen WY, Wu JH, Chu SC. Deciphering microbiomes in anaerobic reactors with superior trichloroethylene dechlorination performance at low pH conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113567. [PMID: 31733964 DOI: 10.1016/j.envpol.2019.113567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Different pH conditions have been demonstrated to affect the activities of dechlorinating populations participating in the successive dechlorination of trichloroethylene to ethylene. However, the mechanism of the effect of pH conditions on the assembly of dechlorinating populations and their relations to the structure, function, and dynamics of the microbiome are unclear. In this study, we evaluated the effects of pH on microbiomes assembled in anaerobic trichloroethylene-dechlorinating reactors under neutral (pH 7.2), acidic (pH 6.2), and alkaline (pH 8.2) conditions. The results revealed that among the reactors, the acidic reactor had the highest efficiency for dechlorination without accumulation of dechlorinated metabolites, even at high loading rates. The results of high-throughput sequencing of the 16S rRNA gene indicated that the microbiomes in the 3 reactors underwent varied dynamic succession. The acidic reactor harbored a higher degree of complex microbes, dechlorinator diversity, and abundance of the Victoria subgroup of Dehalococcoides (1.2 ± 0.1 × 106 cell/mL), which were approximately 10-102-fold higher than those at neutral and alkaline conditions. The pH settings altered species-species connectivity and complexity of microbial interaction networks, with more commensal interactions in the dechlorinators of the acidic reactor. As predicted, abundances of several functional gene categories were in strong linearity with pH values, and the microbiome possessed significantly more abundant functions in the acidic reactor (P < 0.001), such as potentially stimulating hydrogen production, cobalamin synthesis, cobalt transport, transport and metabolism of amino acids and secondary metabolites, cell motility, and transcription. All results of microbiomic analyses consistently revealed the observed superior dechlorination process and suggested an association of the reductive dechlorination process with the pH-dependent microbiome. The results of this study provide a new insight into the trichloroethylene dechlorination with regards to pH, and they will be useful for improving bioremediation and management of trichloroethylene-contaminated sites.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Taiwan.
| | - Shun-Chieh Chu
- Environmental Forensic Department, Sustainable Environment Technology Division, Green Energy and Environment Research Labs (GEL), Industrial Technology Research Institute, Taiwan
| |
Collapse
|
5
|
Hermon L, Hellal J, Denonfoux J, Vuilleumier S, Imfeld G, Urien C, Ferreira S, Joulian C. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater. Front Microbiol 2019; 10:89. [PMID: 30809199 PMCID: PMC6379275 DOI: 10.3389/fmicb.2019.00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 02/01/2023] Open
Abstract
Microcosm experiments with CE-contaminated groundwater from a former industrial site were set-up to evaluate the relationships between biological CE dissipation, dehalogenase genes abundance and bacterial genera diversity. Impact of high concentrations of PCE on organohalide respiration was also evaluated. Complete or partial dechlorination of PCE, TCE, cis-DCE and VC was observed independently of the addition of a reducing agent (Na2S) or an electron donor (acetate). The addition of either 10 or 100 μM PCE had no effect on organohalide respiration. qPCR analysis of reductive dehalogenases genes (pceA, tceA, vcrA, and bvcA) indicated that the version of pceA gene found in the genus Dehalococcoides [hereafter named pceA(Dhc)] and vcrA gene increased in abundance by one order of magnitude during the first 10 days of incubation. The version of the pceA gene found, among others, in the genus Dehalobacter, Sulfurospirillum, Desulfuromonas, and Geobacter [hereafter named pceA(Dhb)] and bvcA gene showed very low abundance. The tceA gene was not detected throughout the experiment. The proportion of pceA(Dhc) or vcrA genes relative to the universal 16S ribosomal RNA (16S rRNA) gene increased by up to 6-fold upon completion of cis-DCE dissipation. Sequencing of 16S rRNA amplicons indicated that the abundance of Operational Taxonomic Units (OTUs) affiliated to dehalogenating genera Dehalococcoides, Sulfurospirillum, and Geobacter represented more than 20% sequence abundance in the microcosms. Among organohalide respiration associated genera, only abundance of Dehalococcoides spp. increased up to fourfold upon complete dissipation of PCE and cis-DCE, suggesting a major implication of Dehalococcoides in CEs organohalide respiration. The relative abundance of pceA and vcrA genes correlated with the occurrence of Dehalococcoides and with dissipation extent of PCE, cis-DCE and CV. A new type of dehalogenating Dehalococcoides sp. phylotype affiliated to the Pinellas group, and suggested to contain both pceA(Dhc) and vcrA genes, may be involved in organohalide respiration of CEs in groundwater of the study site. Overall, the results demonstrate in situ dechlorination potential of CE in the plume, and suggest that taxonomic and functional biomarkers in laboratory microcosms of contaminated groundwater following pollutant exposure can help predict bioremediation potential at contaminated industrial sites.
Collapse
Affiliation(s)
- Louis Hermon
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France.,CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Jennifer Hellal
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| | - Jérémie Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphane Vuilleumier
- CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Charlotte Urien
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphanie Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Catherine Joulian
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| |
Collapse
|
6
|
Herrero J, Puigserver D, Nijenhuis I, Kuntze K, Carmona JM. Combined use of ISCR and biostimulation techniques in incomplete processes of reductive dehalogenation of chlorinated solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:819-829. [PMID: 30138882 DOI: 10.1016/j.scitotenv.2018.08.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 05/20/2023]
Affiliation(s)
- Jofre Herrero
- Department of Minerology, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona, Carrer Martí Franquès SN, Barcelona, Spain..
| | - Diana Puigserver
- Department of Minerology, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona, Carrer Martí Franquès SN, Barcelona, Spain
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry (ISOBIO), UFZ Centre for Environmental Research Leipzig-Halle, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kevin Kuntze
- Department of Isotope Biogeochemistry (ISOBIO), UFZ Centre for Environmental Research Leipzig-Halle, Permoserstr. 15, 04318 Leipzig, Germany
| | - José M Carmona
- Department of Minerology, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona, Carrer Martí Franquès SN, Barcelona, Spain
| |
Collapse
|
7
|
Leitão P, Aulenta F, Rossetti S, Nouws HPA, Danko AS. Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:17-23. [PMID: 29245034 DOI: 10.1016/j.scitotenv.2017.12.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Patrícia Leitão
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo, RM, Italy; Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE/LAQV, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo, RM, Italy.
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo, RM, Italy
| | - Henri P A Nouws
- REQUIMTE/LAQV, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Anthony S Danko
- Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Buttet GF, Murray AM, Goris T, Burion M, Jin B, Rolle M, Holliger C, Maillard J. Coexistence of two distinct Sulfurospirillum populations respiring tetrachloroethene—genomic and kinetic considerations. FEMS Microbiol Ecol 2018. [DOI: 10.1093/femsec/fiy018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Géraldine Florence Buttet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| | - Alexandra Marie Murray
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Mélissa Burion
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| | - Biao Jin
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Massimo Rolle
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Christof Holliger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| | - Julien Maillard
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Yang Y, Cápiro NL, Marcet TF, Yan J, Pennell KD, Löffler FE. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8579-8588. [PMID: 28665587 DOI: 10.1021/acs.est.7b01510] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulfurospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5 and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulfurospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCE-dechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulfurospirillum multivorans. These findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulfurospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.
Collapse
Affiliation(s)
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Tyler F Marcet
- Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | | | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | | |
Collapse
|
10
|
Matturro B, Presta E, Rossetti S. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:445-452. [PMID: 26748009 DOI: 10.1016/j.scitotenv.2015.12.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Chlorinated compounds pose environmental concerns due to their toxicity and wide distribution in several matrices. Microorganisms specialized in leading anaerobic reductive dechlorination (RD) processes, including Dehalococcoides mccartyi (Dhc), are able to reduce chlorinated compounds to harmless products or to less toxic forms. Here we report the first detailed study dealing with the RD potential of heavy polluted marine sediment by evaluating the biodegradation kinetics together with the composition, dynamics and activity of indigenous microbial population. A microcosm study was conducted under strictly anaerobic conditions on marine sediment collected near the marine coast of Sarno river mouth, one of the most polluted river in Europe. Tetrachloroethene (PCE), used as model pollutant, was completely converted to ethene within 150 days at reductive dechlorination rate equal to 0.016 meq L(-1) d(-1). Consecutive spikes of PCE allowed increasing the degradation kinetics up to 0.1 meq L(-1)d(-1) within 20 days. Strictly anaerobiosis and repeated spikes of PCE stimulated the growth of indigenous Dhc cells (growth yield of ~7.0 E + 07 Dhc cells per μM Cl(-1) released). Dhc strains carrying the reductive dehalogenase genes tceA and vcrA were detected in the original marine sediment and their number increased during the treatment as demonstrated by the high level of tceA expression at the end of the microcosm study (2.41 E + 05 tceA gene transcripts g(-1)). Notably, the structure of the microbial communities was fully described by Catalysed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) as wells as the dynamics of the dechlorinating bacteria during the microcosms operation. Interestingly, a direct role of Dhc cells was ascertained suggesting the existence of strains adapted at salinity conditions. Additionally, non-Dhc Chloroflexi were retrieved in the original sediment and were kept stable over time suggesting their likely flanking role of the RD process.
Collapse
Affiliation(s)
- B Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy
| | - E Presta
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy
| | - S Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy.
| |
Collapse
|
11
|
Mingo FS, Diekert G, Studenik S. Enrichment of Desulfitobacterium spp. from forest and grassland soil using the O-demethylation of phenyl methyl ethers as a growth-selective process. Microbiology (Reading) 2016; 162:224-235. [DOI: 10.1099/mic.0.000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Felix Sebastian Mingo
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Sandra Studenik
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
12
|
Mirza BS, Sorensen DL, Dupont RR, McLean JE. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns. Appl Microbiol Biotechnol 2015; 100:2367-79. [PMID: 26536878 DOI: 10.1007/s00253-015-7112-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
Trichloroethene (TCE) in groundwater is a major health concern and biostimulation/bioaugmentation-based strategies have been evaluated to achieve complete reductive dechlorination with varying success. Different carbon sources were hypothesized to stimulate different extents of TCE reductive dechlorination. Ecological conditions that developed different dechlorination stages were investigated by quantitating Dehalococcoides 16S rRNA (Dhc) and reductive dehalogenase gene abundance, and by describing biogeochemical properties of laboratory columns in response to this biostimulation. Eight large columns (183 cm × 15.2 cm), packed with aquifer material from Hill AFB, Utah, that were continuously fed TCE for 7.5 years. Duplicate columns were biostimulated with whey or one of two different Newman Zone® emulsified oil formulations containing either nonionic surfactant (EOLN) or standard surfactant (EOL). Two columns were non-stimulated controls. Complete (whey amended), partial (EOLN amended), limited (EOL), and non-TCE dehalogenating systems (controls) developed over the course of the study. Bioaugmentation of half of the columns with Bachman Road culture 3 years prior to dismantling did not influence the extent of TCE dehalogenation. Multivariate analysis clustered samples by biostimulation treatments and extent of TCE dehalogenation. Dhc, tceA, and bvcA gene concentrations did not show a consistent relationship with TCE dehalogenation but the vcrA gene was more abundant in completely dehalogenating, whey-treated columns. The whey columns developed strongly reducing conditions producing Fe(II), sulfide, and methane. Biostimulation with different carbon and energy sources can support high concentrations of diverse Dhc, but carbon addition has a major influence on biogeochemical processes effecting the extent of TCE dehalogenation.
Collapse
Affiliation(s)
- Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, UT, 84322-8200, USA
| | - Darwin L Sorensen
- Utah Water Research Laboratory, Utah State University, Logan, UT, 84322-8200, USA
| | - R Ryan Dupont
- Utah Water Research Laboratory, Utah State University, Logan, UT, 84322-8200, USA.,Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 84322-8200, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Utah State University, Logan, UT, 84322-8200, USA. .,Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 84322-8200, USA.
| |
Collapse
|
13
|
Miura T, Yamazoe A, Ito M, Ohji S, Hosoyama A, Takahata Y, Fujita N. The Impact of Injections of Different Nutrients on the Bacterial Community and Its Dechlorination Activity in Chloroethene-Contaminated Groundwater. Microbes Environ 2015; 30:164-71. [PMID: 25877696 PMCID: PMC4462927 DOI: 10.1264/jsme2.me14127] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dehalococcoides spp. are currently the only organisms known to completely reduce cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) to non-toxic ethene. However, the activation of fermenting bacteria that generate acetate, hydrogen, and CO2 is considered necessary to enhance the dechlorination activity of Dehalococcoides and enable the complete dechlorination of chloroethenes. In the present study, we stimulated chloroethene-contaminated groundwater by injecting different nutrients prepared from yeast extract or polylactate ester using a semicontinuous culture system. We then evaluated changes in the bacterial community structure and their relationship with dechlorination activity during the biostimulation. The populations of Dehalococcoides and the phyla Bacteroidetes, Firmicutes, and Spirochaetes increased in the yeast extract-amended cultures and chloroethenes were completely dechlorinated. However, the phylum Proteobacteria was dominant in polylactate ester-amended cultures, in which almost no cis-DCE and VC were dechlorinated. These results provide fundamental information regarding possible interactions among bacterial community members involved in the dechlorination process and support the design of successful biostimulation strategies.
Collapse
Affiliation(s)
- Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation
| | | | | | | | | | | | | |
Collapse
|
14
|
Buttet GF, Holliger C, Maillard J. Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase. Appl Environ Microbiol 2013; 79:6941-7. [PMID: 23995945 PMCID: PMC3811552 DOI: 10.1128/aem.02312-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Lausanne, Switzerland
| | | | | |
Collapse
|
15
|
Kranzioch I, Stoll C, Holbach A, Chen H, Wang L, Zheng B, Norra S, Bi Y, Schramm KW, Tiehm A. Dechlorination and organohalide-respiring bacteria dynamics in sediment samples of the Yangtze Three Gorges Reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7046-7056. [PMID: 23423867 DOI: 10.1007/s11356-013-1545-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
Several groups of bacteria such as Dehalococcoides spp., Dehalobacter spp., Desulfomonile spp., Desulfuromonas spp., or Desulfitobacterium spp. are able to dehalogenate chlorinated pollutants such as chloroethenes, chlorobenzenes, or polychlorinated biphenyls under anaerobic conditions. In order to assess the dechlorination potential in Yangtze sediment samples, the presence and activity of the reductively dechlorinating bacteria were studied in anaerobic batch tests. Eighteen sediment samples were taken in the Three Gorges Reservoir catchment area of the Yangtze River, including the tributaries Jialing River, Daning River, and Xiangxi River. Polymerase chain reaction analysis indicated the presence of dechlorinating bacteria in most samples, with varying dechlorinating microbial community compositions at different sampling locations. Subsequently, anaerobic reductive dechlorination of tetrachloroethene (PCE) was tested after the addition of electron donors. Most cultures dechlorinated PCE completely to ethene via cis-dichloroethene (cis-DCE) or trans-dichloroethene. Dehalogenating activity corresponded to increasing numbers of Dehalobacter spp., Desulfomonile spp., Desulfitobacterium spp., or Dehalococcoides spp. If no bacteria of the genus Dehalococcoides spp. were present in the sediment, reductive dechlorination stopped at cis-DCE. Our results demonstrate the presence of viable dechlorinating bacteria in Yangtze samples, indicating their relevance for pollutant turnover.
Collapse
Affiliation(s)
- Irene Kranzioch
- Department Environmental Biotechnology, DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. J Bacteriol 2013; 195:5186-95. [PMID: 24039263 DOI: 10.1128/jb.00730-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The strategic adaptation of prokaryotes in polluted niches involves the efficient regulation of their metabolism. The obligate anaerobe and metabolically versatile Desulfitobacterium hafniense reductively dechlorinates halogenated organic compounds (so-called organohalides). Some D. hafniense strains carry out organohalide respiration (OHR), a process which requires the use of corrinoid as a cofactor in reductive dehalogenases, the key enzymes in OHR. We report here the diversity of the cobalamin riboswitches that possibly regulate the corrinoid metabolism for D. hafniense. The analysis of available D. hafniense genomes indicates the presence of 18 cobalamin riboswitches located upstream of genes whose products are mainly involved in corrinoid biosynthesis and transport. To obtain insight into their function, the secondary structures of three of these RNA elements were predicted by Mfold, as well as analyzed by in-line probing. These RNA elements both display diversity in their structural elements and exhibit various affinities toward adenosylcobalamin that possibly relates to their role in the regulation of corrinoid metabolism. Furthermore, adenosylcobalamin-induced in vivo repression of RNA synthesis of the downstream located genes indicates that the corrinoid transporters and biosynthetic enzymes in D. hafniense strain TCE1 are regulated at the transcriptional level. Taken together, the riboswitch-mediated regulation of the complex corrinoid metabolism in D. hafniense could be of crucial significance in environments polluted with organohalides both to monitor their intracellular corrinoid level and to coexist with corrinoid-auxotroph OHR bacteria.
Collapse
|
17
|
Matturro B, Tandoi V, Rossetti S. Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state conditions. N Biotechnol 2013; 30:756-62. [DOI: 10.1016/j.nbt.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 11/15/2022]
|
18
|
Richardson RE. Genomic insights into organohalide respiration. Curr Opin Biotechnol 2013; 24:498-505. [DOI: 10.1016/j.copbio.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/14/2022]
|
19
|
Dugat-Bony E, Biderre-Petit C, Jaziri F, David MM, Denonfoux J, Lyon DY, Richard JY, Curvers C, Boucher D, Vogel TM, Peyretaillade E, Peyret P. In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 2012; 5:642-53. [PMID: 22432919 PMCID: PMC3815876 DOI: 10.1111/j.1751-7915.2012.00339.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The bioremediation of chloroethene contaminants in groundwater polluted systems is still a serious environmental challenge. Many previous studies have shown that cooperation of several dechlorinators is crucial for complete dechlorination of trichloroethene to ethene. In the present study, we used an explorative functional DNA microarray (DechloArray) to examine the composition of specific functional genes in groundwater samples in which chloroethene bioremediation was enhanced by delivery of hydrogen‐releasing compounds. Our results demonstrate for the first time that complete biodegradation occurs through spatial and temporal variations of a wide diversity of dehalorespiring populations involving both Sulfurospirillum, Dehalobacter, Desulfitobacterium, Geobacter and Dehalococcoides genera. Sulfurospirillum appears to be the most active in the highly contaminated source zone, while Geobacter was only detected in the slightly contaminated downstream zone. The concomitant detection of both bvcA and vcrA genes suggests that at least two different Dehalococcoides species are probably responsible for the dechlorination of dichloroethenes and vinyl chloride to ethene. These species were not detected on sites where cis‐dichloroethene accumulation was observed. These results support the notion that monitoring dechlorinators by the presence of specific functional biomarkers using a powerful tool such as DechloArray will be useful for surveying the efficiency of bioremediation strategies.
Collapse
Affiliation(s)
- Eric Dugat-Bony
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, F63000, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maillard J, Charnay MP, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, Holliger C. Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation 2011; 22:949-60. [PMID: 21243405 DOI: 10.1007/s10532-011-9454-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/08/2011] [Indexed: 11/25/2022]
Abstract
The enrichment culture SL2 dechlorinating tetrachloroethene (PCE) to ethene with strong trichloroethene (TCE) accumulation prior to cis-1,2-dichloroethene (cis-DCE) formation was analyzed for the presence of organohalide respiring bacteria and reductive dehalogenase genes (rdhA). Sulfurospirillum-affiliated bacteria were identified to be involved in PCE dechlorination to cis-DCE whereas "Dehalococcoides"-affiliated bacteria mainly dechlorinated cis-DCE to ethene. Two rdhA genes highly similar to tetrachloroethene reductive dehalogenase genes (pceA) of S. multivorans and S. halorespirans were present as well as an rdhA gene very similar to the trichloroethene reductive dehalogenase gene (tceA) of "Dehalococcoides ethenogenes" strain 195. A single strand conformation polymorphism (SSCP) method was developed allowing the simultaneous detection of the three rdhA genes and the estimation of their abundance. SSCP analysis of different SL2 cultures showed that one pceA gene was expressed during PCE dechlorination whereas the second was expressed during TCE dechlorination. The tceA gene was involved in cis-DCE dechlorination to ethene. Analysis of the internal transcribed spacer region between the 16S and 23S rRNA genes revealed two distinct sequences originating from Sulfurospirillum suggesting that two Sulfurospirillum populations were present in SL2. Whether each Sulfurospirillum population was catalyzing a different dechlorination step could however not be elucidated.
Collapse
Affiliation(s)
- Julien Maillard
- Ecole Polytechnique Fédérale de Lausanne, ENAC IIE-Laboratory for Environmental Biotechnology, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|