1
|
Méndez V, Sepúlveda M, Izquierdo-Fiallo K, Macaya CC, Esparza T, Báez-Matus X, Durán RE, Levicán G, Seeger M. Surfing in the storm: how Paraburkholderia xenovorans thrives under stress during biodegradation of toxic aromatic compounds and other stressors. FEMS Microbiol Rev 2025; 49:fuaf021. [PMID: 40388301 DOI: 10.1093/femsre/fuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation, (ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and bioremediation strategies.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Mario Sepúlveda
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Constanza C Macaya
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Teresa Esparza
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Ximena Báez-Matus
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Roberto E Durán
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
2
|
Zou S, Ma Y, Zhao L, Chen X, Gao H, Chen J, Xue Y, Zheng Y. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng 2024; 47:1803-1814. [PMID: 39080012 DOI: 10.1007/s00449-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yizhi Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lixiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaomin Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hailing Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Juan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Virklund A, Jensen SI, Nielsen AT, Woodley JM. Combining genetic engineering and bioprocess concepts for improved phenylpropanoid production. Biotechnol Bioeng 2023; 120:613-628. [PMID: 36418654 DOI: 10.1002/bit.28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
The group of natural aromatic compounds known as phenylpropanoids has diverse applications, but current methods of production which are largely based on synthesis from petrochemicals or extraction from agricultural biomass are unsustainable. Bioprocessing is a promising alternative, but improvements in production titers and rates are required to make this method profitable. Here the recent advances in genetic engineering and bioprocess concepts for the production of phenylpropanoids are presented for the purpose of identifying successful strategies, including adaptive laboratory evolution, enzyme engineering, in-situ product removal, and biocatalysis. The pros and cons of bacterial and yeast hosts for phenylpropanoid production are discussed, also in the context of different phenylpropanoid targets and bioprocess concepts. Finally, some broad recommendations are made regarding targets for continued improvement and areas requiring specific attention from researchers to further improve production titers and rates.
Collapse
Affiliation(s)
- Alexander Virklund
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Sheila I Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alex T Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Guo Y, Alvigini L, Trajkovic M, Alonso-Cotchico L, Monza E, Savino S, Marić I, Mattevi A, Fraaije MW. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound. Nat Commun 2022; 13:7195. [PMID: 36418310 PMCID: PMC9684555 DOI: 10.1038/s41467-022-34912-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Various 4-alkylphenols can be easily obtained through reductive catalytic fractionation of lignocellulosic biomass. Selective dehydrogenation of 4-n-propylguaiacol results in the formation of isoeugenol, a valuable flavor and fragrance molecule and versatile precursor compound. Here we present the engineering of a bacterial eugenol oxidase to catalyze this reaction. Five mutations, identified from computational predictions, are first introduced to render the enzyme more thermostable. Other mutations are then added and analyzed to enhance chemoselectivity and activity. Structural insight demonstrates that the slow catalytic activity of an otherwise promising enzyme variant is due the formation of a slowly-decaying covalent substrate-flavin cofactor adduct that can be remedied by targeted residue changes. The final engineered variant comprises eight mutations, is thermostable, displays good activity and acts as a highly chemoselective 4-n-propylguaiacol oxidase. We lastly use our engineered biocatalyst in an illustrative preparative reaction at gram-scale. Our findings show that a natural enzyme can be redesigned into a tailored biocatalyst capable of valorizing lignin-based monophenols.
Collapse
Affiliation(s)
- Yiming Guo
- grid.4830.f0000 0004 0407 1981Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands
| | - Laura Alvigini
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Milos Trajkovic
- grid.4830.f0000 0004 0407 1981Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands
| | | | | | - Simone Savino
- grid.4830.f0000 0004 0407 1981Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands
| | - Ivana Marić
- grid.4830.f0000 0004 0407 1981Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands
| | - Andrea Mattevi
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Marco W. Fraaije
- grid.4830.f0000 0004 0407 1981Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Half-Preparative Scale Synthesis of (S)-1-Phenylethane-1,2-Diol as a Result of 2-Phenylethanol Hydroxylation with Aspergillus niger (IAFB 2301) Assistance. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aspergillus niger (IAFB 2301) was employed for bioconversions of 2-phenylethanol as an immobilized or free mycelium and also as a spore suspension. Experiments were conducted on laboratory and half-preparative scale (bioreactor New Brunswick Scientific, BioFlo Model C32). Thus, A. niger applied as free mycelium, depending on the outcome, supported formation of the mixture of 4-hydroxyphenylacetic acid and hydroxytyrosol (final concentration of 13.8 mg/L and 3.7% efficiency) or 4-hydroxyphenylacetic acid, as single product (final concentration of 140 mg/L and 18% efficiency). In case of scaling experiments conducted with flow and batch reactors, accordingly, the following results were achieved: 1. mixture of antioxidants 4-hydroxyphenylacetic acid and hydroxytyrosol formed with final concentration of 76 mg/L and 10% efficiency (simplified flow system and immobilized mycelium); 2. (S)-1-phenylethane-1,2-diol synthesized with a final concentration of 447 mg/L and 65% (1.3 L batch reactor).
Collapse
|
6
|
Helios K, Maniak H, Sowa M, Zierkiewicz W, Wąsińska-Kałwa M, Giurg M, Drożdżewski P, Trusek-Hołownia A, Malik M, Krauze K. Silver(I) complex with 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazin-3-one (Phx-1) ligand: crystal structure, vibrational spectra and biological studies. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1384822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- K. Helios
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - H. Maniak
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - M. Sowa
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - W. Zierkiewicz
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - M. Wąsińska-Kałwa
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - M. Giurg
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - P. Drożdżewski
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | | - M. Malik
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - K. Krauze
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
7
|
Botta L, Brunori F, Tulimieri A, Piccinino D, Meschini R, Saladino R. Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates. ACS OMEGA 2017; 2:2515-2523. [PMID: 30023668 PMCID: PMC6044900 DOI: 10.1021/acsomega.7b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 05/08/2023]
Abstract
The treatment of propolis and poplar bud exudates with laccase from Trametes versicolor and 2,2,6,6-tetramethyl-1-piperidinyloxy free radical increased the antioxidant activity, as evaluated by the 2,2'-diphenyl picrylhydrazyl (DPPH)- and t-butyl-OOH-induced DNA breakage comet assay analyses. The effect was highest for shorter reaction times. Propolis showed the highest antioxidant activity in the DPPH test, whereas poplar bud exudates were more active in reducing the t-butyl-OOH-induced lesions in the Chinese hamster ovary cell line. Even if the concentration of polyphenols decreased during the oxidation, the formation of low-molecular-weight phenols phloroglucinol 4 (1,3,5-trihydroxy benzene), hydroquinone 5 (1,4-dihydroxy benzene), and catechol 6 (1,2-dihydroxy benzene), characterized by the radical-scavenging activity, can account for the observed increase in the antioxidant activity.
Collapse
|
8
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
9
|
Wang L, Nie Y, Tang YQ, Song XM, Cao K, Sun LZ, Wang ZJ, Wu XL. Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal. Front Microbiol 2016; 7:1428. [PMID: 27667989 PMCID: PMC5016517 DOI: 10.3389/fmicb.2016.01428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank.
Collapse
Affiliation(s)
- Lu Wang
- School of Earth and Space Sciences, Peking UniversityBeijing, China; College of Engineering, Peking UniversityBeijing, China
| | - Yong Nie
- College of Engineering, Peking University Beijing, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University Chengdu, China
| | - Xin-Min Song
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development Beijing, China
| | - Kun Cao
- Xinchun Production Plant, Sinopec Shengli Oilfield, Karamay China
| | - Li-Zhu Sun
- Xinchun Production Plant, Sinopec Shengli Oilfield, Karamay China
| | - Zhi-Jian Wang
- Xinchun Production Plant, Sinopec Shengli Oilfield, Karamay China
| | - Xiao-Lei Wu
- College of Engineering, Peking University Beijing, China
| |
Collapse
|
10
|
Chen B, Huang J, Yuan K, Lin L, Wang X, Yang L, Luan T. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. MARINE POLLUTION BULLETIN 2016; 105:73-80. [PMID: 26952991 DOI: 10.1016/j.marpolbul.2016.02.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Pyrene degradation by Mycobacterium sp. strain A1-PYR was investigated in the presence of nutrient broth, phenanthrene and fluoranthene, respectively. Fast bacterial growth in the nutrient broth considerably enhanced pyrene degradation rate, whereas degradation efficiency per cell was substantially decreased. The addition of nutrient broth could not alter the transcription levels of all dioxygenase genotypes. In the PAH-only substrates, bacterial growth completely relied on biological conversion of PAHs into the effective carbon sources, which led to a higher degradation efficiency of pyrene per cell than the case of nutrient broth. Significant correlations were only observed between nidA-related dioxygenase expression and pyrene degradation or bacterial growth. The highest pyrene degradation rate in the presence of phenanthrene was consistent with the highest transcription level of nidA and 4,5-pyrenediol as the sole initial metabolite. This study reveals that bacterial growth requirement can invigorate degradation of PAHs by regulating metabolic pathway and genotypic enzyme expression.
Collapse
Affiliation(s)
- Baowei Chen
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jinyin Huang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Ke Yuan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Li Lin
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaowei Wang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Lihua Yang
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
11
|
Dorer C, Vogt C, Kleinsteuber S, Stams AJM, Richnow HH. Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9122-32. [PMID: 24971724 DOI: 10.1021/es500282t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study applied one- and two-dimensional compound-specific isotope analysis (CSIA) for the elements carbon and hydrogen to assess different means of microbial ethylbenzene activation. Cultures incubated under nitrate-reducing conditions showed significant carbon and highly pronounced hydrogen isotope fractionation of comparable magnitudes, leading to nearly identical slopes in dual-isotope plots. The results imply that Georgfuchsia toluolica G5G6 and an enrichment culture dominated by an Azoarcus species activate ethylbenzene by anaerobic hydroxylation catalyzed by ethylbenzene dehydrogenase, similar to Aromatoleum aromaticum EbN1. The isotope enrichment pattern in dual plots from two strictly anaerobic enrichment cultures differed considerably from those for benzylic hydroxylation, indicating an alternative anaerobic activation step, most likely fumarate addition. Large hydrogen fractionation was quantified using a recently developed Rayleigh-based approach considering hydrogen atoms at reactive sites. Data from nine investigated microbial cultures clearly suggest that two-dimensional CSIA in combination with the magnitude of hydrogen isotope fractionation is a valuable tool to distinguish ethylbenzene degradation and may be of practical use for monitoring natural or technological remediation processes at field sites.
Collapse
Affiliation(s)
- Conrad Dorer
- Department of Isotope Biogeochemistry and §Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research , Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
12
|
Oosterkamp MJ, Veuskens T, Talarico Saia F, Weelink SAB, Goodwin LA, Daligault HE, Bruce DC, Detter JC, Tapia R, Han CS, Land ML, Hauser LJ, Langenhoff AAM, Gerritse J, van Berkel WJH, Pieper DH, Junca H, Smidt H, Schraa G, Davids M, Schaap PJ, Plugge CM, Stams AJM. Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601(T.). PLoS One 2013; 8:e66971. [PMID: 23825601 PMCID: PMC3692508 DOI: 10.1371/journal.pone.0066971] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/14/2013] [Indexed: 12/04/2022] Open
Abstract
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Collapse
Affiliation(s)
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Lynne A. Goodwin
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Hajnalka E. Daligault
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Roxanne Tapia
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Cliff S. Han
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Miriam L. Land
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Loren J. Hauser
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholz Centre for Infection Research, Braunschweig, Germany
| | - Howard Junca
- Research Group Microbial Ecology: Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen, Bogotá, Colombia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Mark Davids
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
13
|
Sun JQ, Xu L, Tang YQ, Chen FM, Zhao JJ, Wu XL. Bacterial pyridine hydroxylation is ubiquitous in environment. Appl Microbiol Biotechnol 2013; 98:455-64. [PMID: 23519734 DOI: 10.1007/s00253-013-4818-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
Ten phenol-degrading bacterial strains were isolated from three geographically distant environments. Five of them, identified as Diaphorobacter, Acidovorax, Acinetobacter (two strains), and Corynebacterium, could additionally transform pyridine, through the transcription of phenol hydroxylase genes induced both by phenol and pyridine. HPLC-UV and LC-MS analyses indicated that one metabolite (m/e = 96.07) with the same molecular weight as monohydroxylated pyridine was produced from the five phenol-degrading strains, when pyridine was the sole carbon source. Phenol (50 mg l(-1)) could initially inhibit and later stimulate the pyridine transformation. In addition, heterologous expression of the phenol hydroxylase gene (pheKLMNOP) resulted in the detection of monohydroxylated pyridine, which confirmed the phenol hydroxylase could catalyze pyridine hydroxylation. Phylogeny of the phenol hydroxylase genes revealed that the genes from the five pyridine-hydroxylating strains form a clade with each other and with those catalyzing the hydroxylation of phenol, BTEX (acronym of benzene, toluene, ethylbenzene, and xylene), and trichloroethylene. These results suggest that pyridine transformation via hydroxylation by phenol hydroxylase may be prevalent in environments than expected.
Collapse
Affiliation(s)
- Ji-Quan Sun
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 2013; 37:428-61. [PMID: 23210799 DOI: 10.1111/1574-6976.12014] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/25/2012] [Accepted: 11/21/2012] [Indexed: 11/28/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxic environment that contains fixed nitrogen. It has even been estimated that about 50% of all nitrogen gas released into the atmosphere is made by these 'impossible' bacteria. Anammox catabolism most likely resides in a special cell organelle, the anammoxosome, which is surrounded by highly unusual ladder-like (ladderane) lipids. Ammonium oxidation and nitrite reduction proceed in a cyclic electron flow through two intermediates, hydrazine and nitric oxide, resulting in the generation of proton-motive force for ATP synthesis. Reduction reactions associated with CO2 fixation drain electrons from this cycle, and they are replenished by the oxidation of nitrite to nitrate. Besides ammonium or nitrite, anammox bacteria use a broad range of organic and inorganic compounds as electron donors. An analysis of the metabolic opportunities even suggests alternative chemolithotrophic lifestyles that are independent of these compounds. We note that current concepts are still largely hypothetical and put forward the most intriguing questions that need experimental answers.
Collapse
Affiliation(s)
- Boran Kartal
- Department of Microbiology, Faculty of Science, Institute of Wetland and Water Research, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities. ACTA ACUST UNITED AC 2013; 40:11-20. [DOI: 10.1007/s10295-012-1199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/10/2012] [Indexed: 12/22/2022]
Abstract
Abstract
In the search for an effective biocatalyst for the reduction of acetophenones with unprotected hydroxy group on the benzene ring, a microorganism, which reduced para-acetylphenol to S-(−)-1-(para-hydroxyphenyl)ethanol under anaerobic conditions, was isolated from soil samples and the 16S rDNA study showed that it was phylogenetically affiliated with species of the genus Rhodococcus and was most similar to Rhodococcus pyridinivorans. Unexpectedly, this strain also hydroxylated para-acetylphenol to give 4-acetylcatechol in presence of oxygen, possessing para-acetylphenol hydroxylase activity. While the reduction of para-acetylphenol had an optimal reaction pH at 7 and a broad optimal temperature range (35–45 °C), the hydroxylation reached the maximum conversion at the pH range of 7–8 and 35 °C. This study identified for the first time a Rhodococcus strain with para-acetylphenol hydroxylase activity, which also contains highly enantioselective carbonyl reductase activity with potential applications for the asymmetric reduction of these less-explored but important ketones such as α-aminoacetophenone, 3′-hydroxyacetophenone and 4′-hydroxyacetophenone. The para-acetylphenol hydroxylase and carbonyl reductase activity are switchable by the reaction conditions.
Collapse
|
16
|
Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab Eng 2012; 14:603-10. [DOI: 10.1016/j.ymben.2012.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/28/2022]
|
17
|
Dror A, Fishman A. Engineering non-heme mono- and dioxygenases for biocatalysis. Comput Struct Biotechnol J 2012; 2:e201209011. [PMID: 24688652 PMCID: PMC3962191 DOI: 10.5936/csbj.201209011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022] Open
Abstract
Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.
Collapse
Affiliation(s)
- Adi Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
18
|
Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke WD, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu SF, Plietker B, Laschat S. Selective Catalytic Oxidation of CH Bonds with Molecular Oxygen. ChemCatChem 2012. [DOI: 10.1002/cctc.201200266] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Robins K, Osorio-Lozada A. Exploiting duality in nature: industrial examples of enzymatic oxidation and reduction reactions. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20102j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|