1
|
Singer M, Kandeel F, Husseiny MI. Salmonella-Based Vaccine: A Promising Strategy for Type 1 Diabetes. Vaccines (Basel) 2025; 13:405. [PMID: 40333284 PMCID: PMC12031388 DOI: 10.3390/vaccines13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in the pancreas. Currently, no therapy exists to halt or cure T1D. Vaccination with diabetic autoantigens may offer protection against T1D development. Genetically modified, attenuated Salmonella utilizing the Salmonella-Pathogenicity Island 2 (SPI2)-encoded Type Three Secretion System (T3SS) can elicit robust immune responses, making it an attractive vaccine platform. Using SPI2-T3SS to deliver an autoantigen alongside immunomodulators and anti-CD3 antibodies induces antigen-specific regulatory T-cells. Our preclinical studies demonstrated the efficacy of a Salmonella-based vaccine in both preventing and reversing autoimmune diabetes in non-obese diabetic (NOD) mice while also exploring its genetic modifications, underlying mechanisms, and delivery strategies. This review evaluates the advantages of an oral T1D vaccine employing live, attenuated Salmonella for autoantigen delivery. We also discuss future directions for advancing this strategy in the treatment of other autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Moustafa DA, DiGiandomenico A, Raghuram V, Schulman M, Scarff JM, Davis MR, Varga JJ, Dean CR, Goldberg JB. Efficacy of a Pseudomonas aeruginosa serogroup O9 vaccine. Infect Immun 2023; 91:e0024723. [PMID: 37991349 PMCID: PMC10715167 DOI: 10.1128/iai.00247-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are 20 different O antigens composed of different repeat sugar structures conferring serogroup specificity, and 10 are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is 1 of the 10 serogroups commonly found in infection, but it has never been developed into a vaccine, due in part to the acid-labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing bacteria and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here, we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Marc Schulman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael R. Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - John J. Varga
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Charles R. Dean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Moustafa DA, DiGiandomenico A, Raghuram V, Schulman M, Scarff JM, Davis, MR, Varga JJ, Dean CR, Goldberg JB. Efficacy of a Pseudomonas aeruginosa Serogroup O9 Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548830. [PMID: 37502855 PMCID: PMC10369961 DOI: 10.1101/2023.07.13.548830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are twenty different O antigens composed of different repeat sugars structures conferring serogroup specificity, and ten are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is one of the ten serogroups commonly found in infection, but it has never been developed into a vaccine, likely due, in part, to the acid labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Marc Schulman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Michael R. Davis,
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - John J. Varga
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Charles R. Dean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
4
|
Xu C, Zhang BZ, Lin Q, Deng J, Yu B, Arya S, Yuen KY, Huang JD. Live attenuated Salmonella typhimurium vaccines delivering SaEsxA and SaEsxB via type III secretion system confer protection against Staphylococcus aureus infection. BMC Infect Dis 2018; 18:195. [PMID: 29699491 PMCID: PMC5921394 DOI: 10.1186/s12879-018-3104-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) causes a wide range of infectious diseases in human and animals. The emergence of antibiotic-resistant strains demands novel strategies for prophylactic vaccine development. In this study, live attenuated S. enterica subsp. enterica serotype Typhimurium (S. Typhimurium) vaccine against S. aureus infection was developed, in which Salmonella Pathogenesis Island-1 Type 3 Secretion System (SPI-1 T3SS) was employed to deliver SaEsxA and SaEsxB, two of ESAT-6-like (Early Secreted Antigenic Target-6) virulence factors of S. aureus. METHODS Antigens SaEsxA and SaEsxB were fused with the N-terminal secretion and translocation domain of SPI-1 effector SipA. And cytosolic delivery of Staphylococcal antigens into macrophages was examined by western blot. BALB/c mice were orally immunized with S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines. Antigen-specific humoral and Th1/Th17 immune responses were examined by ELISA and ELISPOT assays 7-9 days after the 2nd booster. For ELISPOT assays, the statistical significance was determined by Student's t test. The vaccine efficacy was evaluated by lethal challenge with two S. aureus clinical isolates Newman strain and USA 300 strain. Statistical significance was determined by Log rank (Mantel-Cox) analysis. And a P value of < 0.05 was considered statistically significant. RESULTS Oral administration of S. Typhimurium-SaEsxA and S. Typhimurium-SaEsxB vaccines induced antigen-specific humoral and Th1/Th17 immune responses, which increased the survival rate for vaccinated mice when challenged with S. aureus strains. CONCLUSIONS The newly developed S. Typhimurium-based vaccines delivering SaEsxA and SaEsxB by SPI-1 T3SS could confer protection against S. aureus infection. This study provides evidence that translocation of foreign antigens via Salmonella SPI-1 T3SS into the cytosol of antigen presenting cells (APCs) could induce potent immune responses against pathogens.
Collapse
Affiliation(s)
- Chen Xu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qiubin Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Smriti Arya
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China. .,Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
5
|
Shi L, Yu B, Cai CH, Huang W, Zheng BJ, Smith DK, Huang JD. Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop. J Control Release 2016; 222:130-40. [PMID: 26682504 DOI: 10.1016/j.jconrel.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 12/06/2015] [Indexed: 01/04/2023]
Abstract
Progress in bacterial therapy for cancer and infectious diseases is hampered by the absence of safe and efficient vectors. Sustained delivery and high gene expression levels are critical for the therapeutic efficacy. Here we developed a Salmonella typhimrium strain to maintain and safely deliver a plasmid vector to target tissues. This vector is designed to allow dual transcription of therapeutic factors, such as cytotoxic proteins, short hairpin RNAs or combinations, in the nucleus or cytoplasm of eukaryotic cells, with this expression sustained by an autocatalytic positive-feedback loop. Mechanisms to prime the system and maintain the plasmid in the bacterium are also provided. Synergistic effects of attenuated Salmonella and our inter-kingdom system allow the precise expression of Diphtheria toxin A chain (DTA) gene in tumor microenvironment and eradicate large established tumors in immunocompetent animals. In the experiments reported here, 26% of mice (n=5/19) with aggressive tumors were cured and the others all survived until the end of the experiment. We also demonstrated that ST4 packaged with shRNA-encoding plasmids has sustained knockdown effects in nude mice bearing human MDA-MB-231 xenografts. Three weeks after injection of 5×10(6) ST4/pIKT-shPlk, PLK1 transcript levels in tumors were 62.5±18.6% lower than the vector control group (P=0.015). The presence of PLK1 5' RACE-PCR cleavage products confirmed a sustained RNAi-mediated mechanism of action. This innovative technology provides an effective and versatile vehicle for efficient inter-kingdom gene delivery that can be applied to cancer therapy and other purposes.
Collapse
Affiliation(s)
- Lei Shi
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chun-Hui Cai
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Wei Huang
- Faculty of Biology, South University of Science and Technology of China, Shenzhen 518055, PR China
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - David Keith Smith
- School of Public Health, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong; The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, PR China.
| |
Collapse
|
6
|
Roos K, Werner E, Loessner H. Multicopy integration of mini-Tn7 transposons into selected chromosomal sites of a Salmonella vaccine strain. Microb Biotechnol 2014; 8:177-87. [PMID: 25488129 PMCID: PMC4321384 DOI: 10.1111/1751-7915.12187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/23/2014] [Indexed: 01/08/2023] Open
Abstract
Chromosomal integration of expression modules for transgenes is an important aspect for the development of novel Salmonella vectors. Mini-Tn7 transposons have been used for the insertion of one such module into the chromosomal site attTn7, present only once in most Gram-negative bacteria. However, integration of multiple mini-Tn7 copies might be suitable for expression of appropriate amounts of antigen or combination of different modules. Here we demonstrate that integration of a 9.6 kb mini-Tn7 harbouring the luciferase luxCDABE (lux) occurs at the natural attTn7 site and simultaneously other locations of the Salmonella chromosome, which were engineered using λ-Red recombinase to contain one or two additional artificial attTn7 sites (a-attTn7). Multicopy integration even at closely spaced attTn7 sites was unexpected in light of the previously reported distance-dependent Tn7 target immunity. Integration of multiple copies of a mini-Tn7 containing a gfp cassette resulted in increasing green fluorescence of bacteria. Stable consecutive integration of two mini-Tn7 encoding lacZ and lux was achieved by initial transposition of lacZ-mini-Tn7, subsequent chromosomal insertion of a-attTn7 and a second round of transposition with lux-mini-Tn7. Mini-Tn7 thus constitutes a versatile method for multicopy integration of expression cassettes into the chromosome of Salmonella and possibly other bacteria.
Collapse
Affiliation(s)
- Karen Roos
- Bacterial Vaccines and Immune Sera, Department of Veterinary Medicine, Paul Ehrlich Institute, Langen, 63225, Germany
| | | | | |
Collapse
|
7
|
Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a. Int J Med Microbiol 2013; 303:105-13. [DOI: 10.1016/j.ijmm.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/19/2012] [Accepted: 01/13/2013] [Indexed: 11/18/2022] Open
|
8
|
Zheng SY, Yu B, Zhang K, Chen M, Hua YH, Yuan S, Watt RM, Zheng BJ, Yuen KY, Huang JD. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines. BMC Immunol 2012; 13:54. [PMID: 23013063 PMCID: PMC3503649 DOI: 10.1186/1471-2172-13-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. Result To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Conclusion Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.
Collapse
Affiliation(s)
- Song-yue Zheng
- Department of Biochemistry, the University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wen J, Yang Y, Zhao G, Tong S, Yu H, Jin X, Du L, Jiang S, Kou Z, Zhou Y. Salmonella typhi Ty21a bacterial ghost vector augments HIV-1 gp140 DNA vaccine-induced peripheral and mucosal antibody responses via TLR4 pathway. Vaccine 2012; 30:5733-9. [DOI: 10.1016/j.vaccine.2012.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 11/16/2022]
|
10
|
Yu B, Yang M, Shi L, Yao Y, Jiang Q, Li X, Tang LH, Zheng BJ, Yuen KY, Smith DK, Song E, Huang JD. Explicit hypoxia targeting with tumor suppression by creating an "obligate" anaerobic Salmonella Typhimurium strain. Sci Rep 2012; 2:436. [PMID: 22666539 PMCID: PMC3365283 DOI: 10.1038/srep00436] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 05/11/2012] [Indexed: 12/19/2022] Open
Abstract
Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, SalmonellaTyphimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do.
Collapse
Affiliation(s)
- Bin Yu
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|