1
|
Yang J, Wu Y, Lv X, Liu L, Li J, Du G, Liu Y. Engineering Redox Cofactor Balance for Improved 5-Methyltetrahydrofolate Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9974-9983. [PMID: 38625685 DOI: 10.1021/acs.jafc.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
5-Methyltetrahydrofolate (5-MTHF) is the sole active form of folate functioning in the human body and is widely used as a nutraceutical. Unlike the pollution from chemical synthesis, microbial synthesis enables green production of 5-MTHF. In this study, Escherichia coli BL21 (DE3) was selected as the host. Initially, by deleting 6-phosphofructokinase 1 and overexpressing glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, the glycolysis pathway flux decreased, while the pentose phosphate pathway flux enhanced. The ratios of NADH/NAD+ and NADPH/NADP+ increased, indicating elevated NAD(P)H supply. This led to more folate being reduced and the successful accumulation of 5-MTHF to 44.57 μg/L. Subsequently, formate dehydrogenases from Candida boidinii and Candida dubliniensis were expressed, which were capable of catalyzing the reaction of sodium formate oxidation for NAD(P)H regeneration. This further increased the NAD(P)H supply, leading to a rise in 5-MTHF production to 247.36 μg/L. Moreover, to maintain the balance between NADH and NADPH, pntAB and sthA, encoding transhydrogenase, were overexpressed. Finally, by overexpressing six key enzymes in the folate to 5-MTHF pathway and employing fed-batch cultivation in a 3 L fermenter, strain Z13 attained a peak 5-MTHF titer of 3009.03 μg/L, the highest level reported in E. coli so far. This research is a significant step toward industrial-scale microbial 5-MTHF production.
Collapse
Affiliation(s)
- Jinning Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
2
|
Kim YE, Cho KH, Bang I, Kim CH, Ryu YS, Kim Y, Choi EM, Nong LK, Kim D, Lee SK. Characterization of an Entner-Doudoroff pathway-activated Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:120. [PMID: 36352474 PMCID: PMC9648032 DOI: 10.1186/s13068-022-02219-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Escherichia coli have both the Embden-Meyerhof-Parnas pathway (EMPP) and Entner-Doudoroff pathway (EDP) for glucose breakdown, while the EDP primarily remains inactive for glucose metabolism. However, EDP is a more favorable route than EMPP for the production of certain products. RESULTS EDP was activated by deleting the pfkAB genes in conjunction with subsequent adaptive laboratory evolution (ALE). The evolved strains acquired mutations in transcriptional regulatory genes for glycolytic process (crp, galR, and gntR) and in glycolysis-related genes (gnd, ptsG, and talB). The genotypic, transcriptomic and phenotypic analyses of those mutations deepen our understanding of their beneficial effects on cellulosic biomass bio-conversion. On top of these scientific understandings, we further engineered the strain to produce higher level of lycopene and 3-hydroxypropionic acid. CONCLUSIONS These results indicate that the E. coli strain has innate capability to use EDP in lieu of EMPP for glucose metabolism, and this versatility can be harnessed to further engineer E. coli for specific biotechnological applications.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyung Hyun Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ina Bang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chang Hee Kim
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Young Shin Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yuchan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Mi Choi
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
4
|
Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in Escherichia coli Mutants through Expression of a Gene Variant ( fsaAA129S) for Fructose 6-Phosphate Aldolase. Int J Mol Sci 2020; 21:ijms21249625. [PMID: 33348713 PMCID: PMC7767278 DOI: 10.3390/ijms21249625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023] Open
Abstract
Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h−1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h−1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.
Collapse
|
5
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
6
|
Lehning CE, Siedler S, Ellabaan MMH, Sommer MOA. Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor. Metab Eng 2017; 42:194-202. [PMID: 28709932 PMCID: PMC5555440 DOI: 10.1016/j.ymben.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
We describe the development of an optimized glycolytic flux biosensor and its application in detecting altered flux in a production strain and in a mutant library. The glycolytic flux biosensor is based on the Cra-regulated ppsA promoter of E. coli controlling fluorescent protein synthesis. We validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in six different E. coli strains and during mevalonate production. Furthermore, we studied the flux-altering effects of genome-wide single gene knock-outs in E. coli in a multiplex FlowSeq experiment. From a library consisting of 2126 knock-out mutants, we identified 3 mutants with high-flux and 95 mutants with low-flux phenotypes that did not have severe growth defects. This approach can improve our understanding of glycolytic flux regulation improving metabolic models and engineering efforts.
Collapse
Affiliation(s)
- Christina E Lehning
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Lyngby, Denmark
| | - Solvej Siedler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Lyngby, Denmark
| | - Mostafa M H Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Lyngby, Denmark.
| |
Collapse
|
7
|
Xu N, Ye C, Chen X, Liu J, Liu L. Genome-scale metabolic modelling common cofactors metabolism in microorganisms. J Biotechnol 2017; 251:1-13. [PMID: 28385592 DOI: 10.1016/j.jbiotec.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
The common cofactors ATP/ADP, NAD(P)(H), and acetyl-CoA/CoA are indispensable participants in biochemical reactions in industrial microbes. To systematically explore the effects of these cofactors on cell growth and metabolic phenotypes, the first genome-scale cofactor metabolic model, icmNX6434, including 6434 genes, 1782 metabolites, and 6877 reactions, was constructed from 14 genome-scale metabolic models of 14 industrial strains. The origin, consumption, and interactions of these common cofactors in microbial cells were elucidated by the icmNX6434 model, and they played important roles in cell growth. The essential cofactor modules contained 2480 genes and 2948 reactions; therefore, improving cofactor biosynthesis, directing these cofactors into essential metabolic pathways, as well as avoiding cofactor utilization during byproduct biosynthesis and futile cycles, are three ways to increase cell growth. The effects of these common cofactors on the distribution and rate of the carbon flux in four universal modes, as well as an optimized metabolic flux, could be obtained by manipulating cofactor availability and balance. Significant changes in the ATP, NAD(H), NADP(H), or acetyl-CoA concentrations triggered relevant metabolic responses to acidic, oxidative, heat, and osmotic stress. Globally, the model icmNX6434 provides a comprehensive platform to elucidate the physiological effects of these cofactors on cell growth, metabolic flux, and industrial robustness. Moreover, the results of this study are a further example of using a consensus genome-scale metabolic model to increase our understanding of key biological processes.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Cheng L, Yang X, Li S, Fu Q, Fu S, Wang J, Li F, Lei L, Shen Z. Impact of gene modification of phosphotransferase system on expression of glutamate dehydrogenase protein of Streptococcus suis in Escherichia coli. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1304179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Likun Cheng
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Xiuyan Yang
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Shuguang Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
| | - Qiang Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Shijun Fu
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Jinliang Wang
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
| | - Feng Li
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| | - Liancheng Lei
- Post-doctoral Studies Center, College of Animal Medicine, Jilin University, Changchun, P.R. China
| | - Zhiqiang Shen
- Post-doctoral Scientific Research Workstation, Key Laboratory of High Cell Density Fermentation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, P.R. China
- Shandong Binzhou Research, Development and Promotion Center For Livestock and Poultry Propolis Vaccine, Binzhou, P.R. China
- Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, P.R. China
| |
Collapse
|
9
|
Dhakal D, Chaudhary AK, Yi JS, Pokhrel AR, Shrestha B, Parajuli P, Shrestha A, Yamaguchi T, Jung HJ, Kim SY, Kim BG, Sohng JK. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol 2016; 100:9917-9931. [PMID: 27412463 DOI: 10.1007/s00253-016-7705-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022]
Abstract
Nargenicin A1, an antibacterial produced by Nocardia sp. CS682 (KCTC 11297BP), demonstrates effective activity against various Gram-positive bacteria. Hence, we attempted to enhance nargenicin A1 production by utilizing the cumulative effect of synthetic biology, metabolic engineering and statistical media optimization strategies. To facilitate the modular assembly of multiple genes for genetic engineering in Nocardia sp. CS682, we constructed a set of multi-monocistronic vectors, pNV18L1 and pNV18L2 containing hybrid promoter (derived from ermE* and promoter region of neo r ), ribosome binding sites (RBS), and restriction sites for cloning, so that each cloned gene was under its own promoter and RBS. The multi-monocistronic vector, pNV18L2 containing transcriptional terminator showed better efficiency in reporter gene assay. Thus, multiple genes involved in the biogenesis of pyrrole moiety (ngnN2, ngnN3, ngnN4, and ngnN5 from Nocardia sp. CS682), glucose utilization (glf and glk from Zymomonas mobilis), and malonyl-CoA synthesis (accA2 and accBE from Streptomyces coelicolor A3 (2)), were cloned in pNV18L2. Further statistical optimization of specific precursors (proline and glucose) and their feeding time led to ~84.9 mg/L nargenicin from Nocardia sp. GAP, which is ~24-fold higher than Nocardia sp. CS682 (without feeding). Furthermore, pikC from Streptomyces venezuelae was expressed to generate Nocardia sp. PikC. Nargenicin A1 acid was characterized as novel derivative of nargenicin A1 produced from Nocardia sp. PikC by mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. We also performed comparative analysis of the anticancer and antibacterial activities of nargenicin A1 and nargenicin A1 acid, which showed a reduction in antibacterial potential for nargenicin A1 acid. Thus, the development of an efficient synthetic biological platform provided new avenues for enhancing or structurally diversifying nargenicin A1 by means of pathway designing and engineering.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Amit Kumar Chaudhary
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jeong Sang Yi
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Seung-Young Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
10
|
Li C, Ying LQ, Zhang SS, Chen N, Liu WF, Tao Y. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microb Cell Fact 2015; 14:117. [PMID: 26264597 PMCID: PMC4534122 DOI: 10.1186/s12934-015-0301-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Background In engineered strains of Escherichia coli, bioconversion efficiency is determined by not only metabolic flux but also the turnover efficiency of relevant pathways. Methyl-d-erythritol 4-phosphate (MEP)-dependent carotenoid biosynthesis in E. coli requires efficient turnover of precursors and balanced flux among precursors, cofactors, and cellular energy. However, the imbalanced supply of glyceraldehyde 3-phosphate (G3P) and pyruvate precursors remains the major metabolic bottleneck. To address this problem, we manipulated various genetic targets related to the Entner–Doudoroff (ED)/pentose phosphate (PP) pathways. Systematic target modification was conducted to improve G3P and pyruvate use and rebalance the precursor and redox fluxes. Results Carotenoid production was improved to different degrees by modifying various targets in the Embden–Meyerhof–Parnas (EMP) and ED pathways, which directed metabolic flux from the EMP pathway towards the ED pathway. The improvements in yield were much greater when the MEP pathway was enhanced. The coordinated modification of ED and MEP pathway targets using gene expression enhancement and protein coupling strategies in the pgi deletion background further improved carotenoid synthesis. The fine-tuning of flux at the branch point between the ED and PP pathways was important for carotenoid biosynthesis. Deletion of pfkAB instead of pgi reduced the carotenoid yield. This suggested that anaplerotic flux of G3P and pyruvate might be necessary for carotenoid biosynthesis. Improved carotenoid yields were accompanied by increased biomass and decreased acetate overflow. Therefore, efficient use of G3P and pyruvate precursors resulted in a balance among carotenoid biosynthesis, cell growth, and by-product metabolism. Conclusions An efficient and balanced MEP-dependent carotenoid bioconversion strategy involving both the ED and PP pathways was implemented by the coordinated modification of diverse central metabolic pathway targets. In this strategy, enhancement of the ED pathway for efficient G3P and pyruvate turnover was crucial for carotenoid production. The anaplerotic role of the PP pathway was important to supply precursors for the ED pathway. A balanced metabolic flux distribution among precursor supply, NADPH generation, and by-product pathways was established. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Lan-Qing Ying
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Sha-Sha Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Nan Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Life Science, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Wei-Feng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol Cell 2015; 59:359-71. [PMID: 26190262 DOI: 10.1016/j.molcel.2015.06.017] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022]
Abstract
Integrity of human skin is endangered by exposure to UV irradiation and chemical stressors, which can provoke a toxic production of reactive oxygen species (ROS) and oxidative damage. Since oxidation of proteins and metabolites occurs virtually instantaneously, immediate cellular countermeasures are pivotal to mitigate the negative implications of acute oxidative stress. We investigated the short-term metabolic response in human skin fibroblasts and keratinocytes to H2O2 and UV exposure. In time-resolved metabolomics experiments, we observed that within seconds after stress induction, glucose catabolism is routed to the oxidative pentose phosphate pathway (PPP) and nucleotide synthesis independent of previously postulated blocks in glycolysis (i.e., of GAPDH or PKM2). Through ultra-short (13)C labeling experiments, we provide evidence for multiple cycling of carbon backbones in the oxidative PPP, potentially maximizing NADPH reduction. The identified metabolic rerouting in oxidative and non-oxidative PPP has important physiological roles in stabilization of the redox balance and ROS clearance.
Collapse
Affiliation(s)
- Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland; PhD Program Systems Biology, Life Science Zurich Graduate School, 8093 Zurich, Switzerland
| | - Hila Emmert
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Joern Soehle
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Marc Winnefeld
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Frank Fischer
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Horst Wenck
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Stefan Gallinat
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Lara Terstegen
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany
| | - Ralph Lucius
- Christian Albrecht University Kiel, Department of Anatomy, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Janosch Hildebrand
- Beiersdorf AG, R&D, Skin Research Center, Unnastrasse 48, Hamburg, 20253 Germany.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism. PLoS One 2015; 10:e0129837. [PMID: 26086807 PMCID: PMC4472234 DOI: 10.1371/journal.pone.0129837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs) of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.
Collapse
|
13
|
Parajuli P, Pandey RP, Trang NTH, Chaudhary AK, Sohng JK. Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli. Microb Cell Fact 2015; 14:76. [PMID: 26051114 PMCID: PMC4459062 DOI: 10.1186/s12934-015-0261-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background A multi-monocistronic synthetic vector was used to assemble multiple genes of a nucleotide diphosphate (NDP)-sugar biosynthetic pathway to construct robust genetic circuits for the production of valuable flavonoid glycosides in Escherichia coli. Characterized functional genes involved in the biosynthesis of uridine diphosphate (UDP)-glucose and thymidine diphosphate (TDP)-rhamnose from various microbial sources along with glucose facilitator diffusion protein (glf) and glucokinase (glk) from Zymomonas mobilis were assembled and overexpressed in a single synthetic multi-monocistronic operon. Results The newly generated NDP-sugars biosynthesis circuits along with regiospecific glycosyltransferases from plants were introduced in E. coli BL21 (DE3) to probe the bioconversion of fisetin, a medicinally important polyphenol produced by various plants. As a result, approximately 1.178 g of fisetin 3-O-glucoside and 1.026 g of fisetin 3-O-rhamnoside were produced in UDP-glucose and TDP-rhamnose biosynthesis systems respectively, after 48 h of incubation in 3 L fermentor while supplementing 0.9 g of fisetin. These yields of fisetin glycosides represent ~99% of bioconversion of exogenously supplemented fisetin. The systems were also found to be highly effective in bio-transforming other flavonols (quercetin, kaempferol, myricetin) into their respective glycosides, achieving over 95% substrate conversion. Conclusion The construction of a synthetic expression vector for bacterial cell factory followed by subsequent re-direction of metabolic flux towards desirable products have always been revolutionized the biotechnological processes and technologies. This multi-monocistronic synthetic vector in a microbial platform is customizable to defined task and would certainly be useful for applications in producing and modifying such therapeutically valued plant secondary metabolites. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prakash Parajuli
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-Si, Chungnam, 336-708, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-Si, Chungnam, 336-708, Republic of Korea.
| | - Nguyen Thi Huyen Trang
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-Si, Chungnam, 336-708, Republic of Korea.
| | - Amit Kumar Chaudhary
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-Si, Chungnam, 336-708, Republic of Korea.
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-Si, Chungnam, 336-708, Republic of Korea.
| |
Collapse
|
14
|
Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD. Designer Microorganisms for Optimized Redox Cascade Reactions - Challenges and Future Perspectives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500202] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Schultz A, Qutub AA. Predicting internal cell fluxes at sub-optimal growth. BMC SYSTEMS BIOLOGY 2015; 9:18. [PMID: 25890056 PMCID: PMC4397736 DOI: 10.1186/s12918-015-0153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/20/2015] [Indexed: 11/17/2022]
Abstract
Background Flux Balance Analysis (FBA) is a widely used tool to model metabolic behavior and cellular function. Applications of FBA span a breadth of research from synthetic engineering of biofuels to understanding evolutionary adaptations. FBA predicts metabolic reaction fluxes that optimize a given objective. This objective is generally defined for unicellular organisms by a theoretical reaction which simulates biomass production. FBA has been extremely successful at predicting in E. coli growth rates under different media and gene essentiality, amongst other things. In order to improve predictions, additional constraints are coupled with optimization of the biomass function. Studies have suggested, however, that unicellular organisms - like multicellular organisms - do not grow at optimal rates. To further improve FBA predictions, particularly of internal cell fluxes, new techniques to explore the sub-optimal solution space need to be developed. Results We present an innovative FBA method called corsoFBA based on the optimization of protein cost at sub-optimal objective levels. Our method shows good agreement with experimental data of E. coli grown at different dilution rates. Maintaining the objective function close to its maximum value predicts metabolic states that closely resemble low dilution rates; while higher dilution rates can be mirrored by lowering the biomass production value. By using a modified version of Extreme Pathways, we are also able to quantify the energy production and overall protein cost for all possible pathways in the central carbon metabolism. Conclusion Metabolic flux distributions at the optimal objective can be substantially different from the near-optimal distributions. Importantly, the behavior of E. coli central carbon metabolism can be better predicted by exploring the sub-optimal FBA solution space. The corsoFBA method presented here is able to predict the behavior of PEP Carboxylase, the glyoxylate shunt and the Entner-Doudoroff pathway at different glucose levels, a behavior not predicted by the minimization of metabolic steps and FBA alone. This technique can be used to better predict internal cell fluxes under different conditions, and corsoFBA will be of great help for the study of cells from multicellular organisms using Flux Balance Analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0153-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- André Schultz
- Department of Bioengineering, Rice University, Main Street, Houston, 6500, USA.
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Main Street, Houston, 6500, USA.
| |
Collapse
|
16
|
Ng CY, Farasat I, Maranas CD, Salis HM. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 2015; 29:86-96. [PMID: 25769287 DOI: 10.1016/j.ymben.2015.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 01/15/2023]
Abstract
NADPH is an essential cofactor for the biosynthesis of several high-value chemicals, including isoprenoids, fatty acid-based fuels, and biopolymers. Tunable control over all potentially rate-limiting steps, including the NADPH regeneration rate, is crucial to maximizing production titers. We have rationally engineered a synthetic version of the Entner-Doudoroff pathway from Zymomonas mobilis that increased the NADPH regeneration rate in Escherichia coli MG1655 by 25-fold. To do this, we combined systematic design rules, biophysical models, and computational optimization to design synthetic bacterial operons expressing the 5-enzyme pathway, while eliminating undesired genetic elements for maximum expression control. NADPH regeneration rates from genome-integrated pathways were estimated using a NADPH-binding fluorescent reporter and by the productivity of a NADPH-dependent terpenoid biosynthesis pathway. We designed and constructed improved pathway variants by employing the RBS Library Calculator to efficiently search the 5-dimensional enzyme expression space and by performing 40 cycles of MAGE for site-directed genome mutagenesis. 624 pathway variants were screened using a NADPH-dependent blue fluorescent protein, and 22 were further characterized to determine the relationship between enzyme expression levels and NADPH regeneration rates. The best variant exhibited 25-fold higher normalized mBFP levels when compared to wild-type strain. Combining the synthetic Entner-Doudoroff pathway with an optimized terpenoid pathway further increased the terpenoid titer by 97%.
Collapse
Affiliation(s)
- Chiam Yu Ng
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Iman Farasat
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Costas D Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Howard M Salis
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, United States; Department of Biological Engineering, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
17
|
Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 2014; 13:104. [PMID: 25027702 PMCID: PMC4223517 DOI: 10.1186/s12934-014-0104-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. RESULTS The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. CONCLUSIONS The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production strains in shake flask culture. This work collectively demonstrates that E. coli has a potential to be a microbial cell factory for riboflavin bioproduction.
Collapse
Affiliation(s)
- Zhenquan Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhibo Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yifan Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xueming Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
18
|
Siedler S, Bringer S, Polen T, Bott M. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply. Biotechnol Bioeng 2014; 111:2067-75. [PMID: 24771245 DOI: 10.1002/bit.25271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 11/11/2022]
Abstract
An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB h(-1) gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1) gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1) gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol dehydrogenase. The differences in respiration rates can explain the suggested higher ArcAB activity in the reference strain.
Collapse
Affiliation(s)
- Solvej Siedler
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | |
Collapse
|
19
|
Klatte S, Wendisch VF. Redox self-sufficient whole cell biotransformation for amination of alcohols. Bioorg Med Chem 2014; 22:5578-85. [PMID: 24894767 DOI: 10.1016/j.bmc.2014.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best.
Collapse
Affiliation(s)
- Stephanie Klatte
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitaetsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitaetsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
20
|
Xie X, Liang Y, Liu H, Liu Y, Xu Q, Zhang C, Chen N. Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli. J Ind Microbiol Biotechnol 2014; 41:1007-15. [PMID: 24671569 DOI: 10.1007/s10295-014-1436-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/10/2014] [Indexed: 12/25/2022]
Abstract
High concentrations of acetate, the main by-product of Escherichia coli (E. coli) high cell density culture, inhibit bacterial growth and L-threonine production. Since metabolic overflux causes acetate accumulation, we attempted to reduce acetate production by redirecting glycolysis flux to the pentose phosphate pathway by deleting the genes encoding phosphofructokinase (pfk) and/or pyruvate kinase (pyk) in an L-threonine-producing strain of E. coli, THRD. pykF, pykA, pfkA, and pfkB deletion mutants produced less acetate (9.44 ± 0.83, 3.86 ± 0.88, 0.30 ± 0.25, and 6.99 ± 0.85 g/l, respectively) than wild-type THRD cultures (19.75 ± 0.93 g/l). THRDΔpykF and THRDΔpykA produced 11.05 and 5.35 % more L-threonine, and achieved a 10.91 and 5.60 % higher yield on glucose, respectively. While THRDΔpfkA grew more slowly and produced less L-threonine than THRD, THRDΔpfkB produced levels of L-threonine (102.28 ± 2.80 g/l) and a yield on glucose (0.34 g/g) similar to that of THRD. The dual deletion mutant THRDΔpfkBΔpykF also achieved low acetate (7.42 ± 0.81 g/l) and high L-threonine yields (111.37 ± 2.71 g/l). The level of NADPH in THRDΔpfkA cultures was depressed, whereas all other mutants produced more NADPH than THRD did. These results demonstrated that modification of glycolysis in E. coli THRD reduced acetate production and increased accumulation of L-threonine.
Collapse
Affiliation(s)
- Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M. SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 2014; 3:41-7. [PMID: 24283989 DOI: 10.1021/sb400110j] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultra-high-throughput screening system for NADPH-dependent enzymes, such as stereospecific alcohol dehydrogenases, was established. It is based on the [2Fe-2S] cluster-containing transcriptional regulator SoxR of Escherichia coli that activates expression of soxS in the oxidized but not in the reduced state of the cluster. As SoxR is kept in its reduced state by NADPH-dependent reductases, an increased NADPH demand of the cell counteracts SoxR reduction and increases soxS expression. We have taken advantage of these properties by placing the eyfp gene under the control of the soxS promoter and analyzed the response of E. coli cells expressing an NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis (LbAdh), which reduces methyl acetoacetate to (R)-methyl 3-hydroxybutyrate. Under suitable conditions, the specific fluorescence of the cells correlated with the substrate concentration added and with LbAdh enzyme activity, supporting the NADPH responsiveness of the sensor. These properties enabled sorting of single cells harboring wild-type LbAdh from those with lowered or without LbAdh activity by fluorescence-activated cell sorting (FACS). In a proof-of-principle application, the system was used successfully to screen a mutant LbAdh library for variants showing improved activity with the substrate 4-methyl-2-pentanone.
Collapse
Affiliation(s)
- Solvej Siedler
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Georg Schendzielorz
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Stephan Binder
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Lothar Eggeling
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Stephanie Bringer
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Bott
- IBG-1:
Biotechnology, Institute
of Bio- and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
22
|
Lorenz E, Klatte S, Wendisch VF. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine. J Biotechnol 2013; 168:289-94. [PMID: 23831557 DOI: 10.1016/j.jbiotec.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.
Collapse
Affiliation(s)
- Elisabeth Lorenz
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
23
|
Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 2013; 24:994-9. [PMID: 23611567 DOI: 10.1016/j.copbio.2013.03.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
24
|
Wang Y, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol 2013; 97:6883-93. [PMID: 23558585 DOI: 10.1007/s00253-013-4859-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 11/26/2022]
Abstract
NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2-haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6-phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA
| | | | | |
Collapse
|
25
|
Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Appl Environ Microbiol 2013; 79:2336-48. [PMID: 23377928 DOI: 10.1128/aem.03414-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.
Collapse
|
26
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Recruiting alternative glucose utilization pathways for improving succinate production. Appl Microbiol Biotechnol 2012; 97:2513-20. [PMID: 22895848 DOI: 10.1007/s00253-012-4344-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/14/2023]
Abstract
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) of Escherichia coli was usually inactivated to increase PEP supply for succinate production. However, cell growth and glucose utilization rate decreased significantly with PTS inactivation. In this work, two glucose transport proteins and two glucokinases (Glk) from E. coli and Zymomonas mobilis were recruited in PTS(-) strains, and their impacts on glucose utilization and succinate production were compared. All PTS(-) strains recruiting Z. mobilis glucose facilitator Glf had higher glucose utilization rates than PTS(-) strains using E. coli galactose permease (GalP), which was suggested to be caused by higher glucose transport velocity and lower energetic cost of Glf. The highest rate obtained by combinatorial modulation of glf and glk E. coli (2.13 g/L•h) was 81 % higher than the wild-type E. coli and 30 % higher than the highest rate obtained by combinatorial modulation of galP and glk E. coli . On the other hand, although glucokinase activities increased after replacing E. coli Glk with isoenzyme of Z. mobilis, glucose utilization rate decreased to 0.58 g/L•h, which was assumed due to tight regulation of Z. mobilis Glk by energy status of the cells. For succinate production, using GalP led to a 20 % increase in succinate productivity, while recruiting Glf led to a 41 % increase. These efficient alternative glucose utilization pathways obtained in this work can also be used for production of many other PEP-derived chemicals, such as malate, fumarate, and aromatic compounds.
Collapse
|
28
|
Siedler S, Bringer S, Bott M. Optimierung des Produkt-zu-Cosubstrat-Verhältnisses in einer reduzierenden Ganzzell-Biotransformation mit Escherichia coli. CHEM-ING-TECH 2012. [DOI: 10.1002/cite.201250258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol 2012; 97:143-52. [PMID: 22851018 PMCID: PMC3536970 DOI: 10.1007/s00253-012-4314-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/02/2022]
Abstract
In this study, the potential of Corynebacterium glutamicum for reductive whole-cell biotransformation is shown. The NADPH-dependent reduction of the prochiral methyl acetoacetate (MAA) to the chiral (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis (Lbadh) was used as model reaction and glucose served as substrate for the regeneration of NADPH. Since NADPH is mainly formed in the oxidative branch of the pentose phosphate pathway (PPP), C. glutamicum was engineered to redirect carbon flux towards the PPP. Mutants lacking the genes for 6-phosphofructokinase (pfkA) or glyceraldehyde 3-phosphate dehydrogenase (gapA) were constructed and analyzed with respect to growth, enzyme activities, and biotransformation performance. Both mutants showed strong growth defects in glucose minimal medium. For biotransformation of MAA to MHB using glucose as reductant, strains were transformed with an Lbadh expression plasmid. The wild type showed a specific MHB production rate of 3.1 mmol(MHB) h(-1) g (cdw) (-1) and a yield of 2.7 mol(MHB) mol (glucose) (-1) . The ∆pfkA mutant showed a similar MHB production rate, but reached a yield of 4.8 mol(MHB) mol (glucose) (-1) , approaching the maximal value of 6 mol(NADPH) mol (glucose) (-1) expected for a partially cyclized PPP. The specific biotransformation rate of the ΔgapA mutant was decreased by 62 % compared to the other strains, but the yield was increased to 7.9 mol(MHB) mol (glucose) (-1) , which to our knowledge is the highest one reported so far for this mode of NADPH regeneration. As one fourth of the glucose was converted to glycerol, the experimental yield was close to the theoretically maximal yield of 9 mol(NADPH) mol (glucose) (-1) .
Collapse
|
30
|
Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 2012; 78:6975-86. [PMID: 22843527 DOI: 10.1128/aem.01166-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.
Collapse
|