1
|
Nhlabathi-Chidi MK, Mametja NM, Nkambule TTI, Feleni U, Masebe T, Managa M. An Overview of the Current Approaches in Drug-Resistant Bacterial Removal Within Wastewaters: Can We Move Towards Nanomagnet-Porphyrin Hybrids for Antimicrobial Photodynamic Inactivation (aPDI). Curr Microbiol 2025; 82:249. [PMID: 40251299 PMCID: PMC12008068 DOI: 10.1007/s00284-025-04222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025]
Abstract
The rise in the occurrence of drug-resistant bacteria within wastewater treatment plants (WWTPs) and their dissemination into the ecosystem from the same WWTPs has created a prevalent crisis affecting the integrity of human life and water sources worldwide. Antimicrobial Photodynamic Inactivation (aPDI) can be explored in an effort to address this crisis and preserve natures integrity as it can incorporate environmentally sustainable and cost-effective disinfection strategies within wastewater treatment plants. aPDI is a technique introduced as a strategic approach to inactivate harmful Drug-Resistant Bacteria (DRB) that are ineffectively removed with current wastewater treatment strategies. The incorporation of Nanomagnet-Porphyrin Hybrid (NMPH) based aPDI illustrates notable microbial inactivation and innovatively introduces prospects of achieving affordable and ecologically beneficial disinfection within wastewaters since they can be recycled and reused. Furthermore the added advantage of NMPHs based aPDI lies in the generation of a high quantum yield of cytotoxic 1O2 due to a strong visible absorption ascribed to π-π* electronic transitions within the porphyrins. These properties are largely ascribed to the high coefficient of light absorption in a broad wavelength range allowing them to generate reactive oxygen species through a spin-forbidden intersystem crossing mechanism allowing them to demonstrate express disinfection of harmful pathogens. This review addresses the high inactivation profiles of NMPH based aPDI, its low operating costs and reusability as the potential of establishing NMPH based aPDI in nanotechnology wastewater remediation and microbial disinfection applications. The authors believe that this systematic review can stimulate new researchers and assist in the future development of this important field of research, especially when it comes to the aquatic environment and natural water resources and given the adequate attention this method can aid globally but more so within emerging economies to ensure potable water is delivered to all people.
Collapse
Affiliation(s)
- Mbalenhle Kabelo Nhlabathi-Chidi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Neo Mokgadi Mametja
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences (CAES), University of South Africa, Johannesburg, 1710, Florida, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Tracy Masebe
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences (CAES), University of South Africa, Johannesburg, 1710, Florida, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa.
| |
Collapse
|
2
|
Gamelas SRD, Pereira C, Faustino MAF, Almeida A, Lourenço LMO. Unveiling the potent antimicrobial photodynamic therapy in Gram-positive and Gram-negative bacteria - Water remediation with monocharged chlorins. CHEMOSPHERE 2024; 367:143593. [PMID: 39433099 DOI: 10.1016/j.chemosphere.2024.143593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Water pollution is a significant concern worldwide, and it includes contaminants such as antibiotic-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) offers a non-invasive and non-toxic alternative for the inactivation of these microorganisms. So, this study reports the synthesis, structural characterisation, photophysical properties, and aPDT efficacy of cationic free-base and zinc(II) chlorin (Chl) derivatives bearing N,N-dimethylpyrrolydinium groups (H2Chl 1a and ZnChl 1b). The aPDT assays were performed against two bacterial models: Staphylococcus aureus (Gram-(+)) and Escherichia coli (Gram-(-)). The H2Chl 1a and ZnChl 1b distinct's solubility profile, coupled with their ability to generate singlet oxygen (1O2) under light exposure, (H2Chl 1a, ФΔ = 0.58 < TPP, ФΔ = 0.65 < ZnChl 1b, ФΔ = 0.83) opens up their potential application as photosensitizers (PS) in aPDT. The effectiveness of H2Chl 1a and ZnChl 1b at 1.0 and 5.0 μM in aPDT against S. aureus and E. coli at 500 W m-2 (total exposure time: 60-120 min) showed a viability reduction >6.0 log10 CFU mL-1. Additionally, KI was used as a coadjuvant to potentiate the photoinactivation of E. coli, reaching the method's detection limit (>4.0 log10 RLU). As most of the PS developed to inactivate Gram-negative bacteria are cationic with three or more charges, the fact that the H2Chl 1a and ZnChl 1b with only one cationic charge photoinactivate E. coli at low concentrations and with a reduced light dose, it is an importing discovery that deserves further exploration. These monocharged chlorin dyes have the potential for water remediation.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Bioluminescent Models to Evaluate the Efficiency of Light-Based Antibacterial Approaches. Methods Mol Biol 2022; 2451:631-669. [PMID: 35505039 DOI: 10.1007/978-1-0716-2099-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of microbial resistance to antimicrobials among several common pathogenic microbial strains is an increasing problem worldwide. Thus, it is urgent to develop not only new antimicrobial therapeutics to fight microbial infections, but also new effective, rapid, and inexpensive methods to monitor the efficacy of these new therapeutics. Antimicrobial photodynamic therapy (aPDT) and antimicrobial blue light (aBL) therapy are receiving considerable attention for their antimicrobial potential and represent realistic alternatives to antibiotics. To monitor the photoinactivation process provided by aPDT and aBL, faster and more effective methods are required instead of laborious conventional plating and overnight incubation procedures. Bioluminescent microbial models are very interesting in this context. Light emission from bioluminescent microorganisms is a highly sensitive indication of their metabolic activity and can be used to monitor, in real time, the effects of antimicrobial agents and therapeutics. This chapter reviews the efforts of the scientific community concerning the development of in vitro, ex vivo, and in vivo bioluminescent bacterial models and their potential to evaluate the efficiency of aPDT and aBL in the inactivation of bacteria.
Collapse
Affiliation(s)
- Ana T P C Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Gamelas SRD, Gomes ATPC, Faustino MAF, Tomé AC, Tomé JPC, Almeida A, Lourenço LMO. Photoinactivation of Escherichia coli with Water-Soluble Ammonium-Substituted Phthalocyanines. ACS APPLIED BIO MATERIALS 2020; 3:4044-4051. [DOI: 10.1021/acsabm.0c00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara R. D. Gamelas
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T. P. C. Gomes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Augusto C. Tomé
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P. C. Tomé
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro M. O. Lourenço
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Boluki E, Moradi M, Azar PS, Fekrazad R, Pourhajibagher M, Bahador A. The effect of antimicrobial photodynamic therapy against virulence genes expression in colistin-resistance Acinetobacter baumannii. Laser Ther 2019; 28:27-33. [PMID: 31190695 DOI: 10.5978/islsm.28_19-or-03] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/31/2018] [Indexed: 11/06/2022]
Abstract
Background and Aims The emergence of drug-resistant infections is a global problem. Acinetobacter baumannii has attracted much attention over the last few years because of resistance to a wide range of antibiotics. Applying new non-antibiotic methods can save lives of many people around the world. Antimicrobial photodynamic therapy (aPDT) technique can be used as a new method for controlling the infections. In this study we investigated the effect of aPDT on the expression of pathogenic genes in colistin-resistance A. baumannii isolated from a burn patient. Materials and methods The suspension of colistin-resistance A. baumannii was incubated with 0.01 mg/ml of toluidine blue O (TBO) in the dark; then the light emitting diode device with a wavelength of 630 ± 10 nm and output intensity of 2000-4000 mW /cm2 was irradiated to the suspension at room temperature. Subsequently, after the aPDT, genes expression of ompA and pilZ was investigated by using real-time polymerase chain reaction technique. Result Among the genes studied, the transcript of the ompA gene after aPDT was increased significantly in comparison with control groups (P < 0.05). Whereas, there was no remarkable different in pilZ gene expression (P > 0.05). Conclusions It can be concluded from the results that the ompA as an outer membrane of A. baumannii is degraded after exposing aPDT and it will probably be done the penetration of antibiotics into cells of this bacterium easily.
Collapse
Affiliation(s)
- Ebrahim Boluki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser research center in medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lourenço LMO, Rocha DMGC, Ramos CIV, Gomes MC, Almeida A, Faustino MAF, Almeida Paz FA, Neves MGPMS, Cunha Â, Tomé JPC. Photoinactivation of Planktonic and Biofilm Forms of
Escherichia coli
through the Action of Cationic Zinc(II) Phthalocyanines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leandro M. O. Lourenço
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Deisy M. G. C. Rocha
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Catarina I. V. Ramos
- Mass Spectrometry Laboratory and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria C. Gomes
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Adelaide Almeida
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Filipe A. Almeida Paz
- CICECO-Aveiro Institute of Materials and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria G. P. M. S. Neves
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Ângela Cunha
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João P. C. Tomé
- CQE and Departamento de Engenharia Química Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, n°1 1049-001 Lisboa Portugal
| |
Collapse
|
7
|
Sagrillo FS, Dias C, Gomes ATPC, Faustino MAF, Almeida A, Gonçalves de Souza A, Costa ARP, Boechat FDCS, Bastos Vieira de Souza MC, Neves MGPMS, Cavaleiro JAS. Synthesis and photodynamic effects of new porphyrin/4-oxoquinoline derivatives in the inactivation of S. aureus. Photochem Photobiol Sci 2019; 18:1910-1922. [DOI: 10.1039/c9pp00102f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
New porphyrin/4-oxoquinoline conjugates were synthesized and shown to be excellent photosensitizing agents in the inactivation of S. aureus by the antimicrobial photodynamic therapy protocol.
Collapse
Affiliation(s)
- Fernanda Savacini Sagrillo
- QOPNA & LAQV-REQUIMTE and Chemistry Department
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Programa de Pós-Graduação em Química
| | - Cristina Dias
- Programa de Pós-Graduação em Química
- Instituto de Química
- Universidade Federal Fluminense
- Rio de Janeiro
- Brazil
| | | | - Maria A. F. Faustino
- QOPNA & LAQV-REQUIMTE and Chemistry Department
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM
- University of Aveiro
- Aveiro
- Portugal
| | - Alan Gonçalves de Souza
- Programa de Pós-Graduação em Química
- Instituto de Química
- Universidade Federal Fluminense
- Rio de Janeiro
- Brazil
| | | | | | | | | | - José A. S. Cavaleiro
- QOPNA & LAQV-REQUIMTE and Chemistry Department
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
8
|
Vieira C, Gomes ATPC, Mesquita MQ, Moura NMM, Neves MGPMS, Faustino MAF, Almeida A. An Insight Into the Potentiation Effect of Potassium Iodide on aPDT Efficacy. Front Microbiol 2018; 9:2665. [PMID: 30510542 PMCID: PMC6252324 DOI: 10.3389/fmicb.2018.02665] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is gaining a special importance as an effective approach against multidrug-resistant strains responsible of fatal infections. The addition of potassium iodide (KI), a non-toxic salt, is recognized to increase the aPDT efficiency of some photosensitizers (PSs) on a broad-spectrum of microorganisms. As the reported cases only refer positive aPDT potentiation results, in this work we selected a broad range of porphyrinic and non-porphyrinic PSs in order to gain a more comprehensive knowledge about this aPDT potentiation by KI. For this evaluation were selected a series of meso-tetraarylporphyrins positively charged at meso positions or at β-pyrrolic positions and the non-porphyrinic dyes Methylene blue, Rose Bengal, Toluidine Blue O, Malachite Green and Crystal Violet; the assays were performed using a bioluminescent E. coli strain as a model. The results indicate that KI has also the ability to potentiate the aPDT process mediated by some of the cationic PSs [Tri-Py(+)-Me, Tetra-Py(+)-Me, Form, RB, MB, Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP, and β-BrImiPyTPP] allowing a drastic reduction of the treatment time as well as of the PS concentration. However, the efficacy of some porphyrinic and non-porphyrinic PSs [Di-Py(+)-Me opp , Di-Py(+)-Me adj , Tetra-Py, TBO, CV, and MG] was not improved by the presence of the coadjuvant. For the PSs tested in this study, the ones capable to decompose the peroxyiodide into iodine (easily detectable by spectroscopy or by the visual appearance of a blue color in the presence of amylose) were the most promising ones to be used in combination with KI. Although these studies confirmed that the generation of 1O2 is an important fact in this process, the PS structure (charge number and charge position), aggregation behavior and affinity for the cell membrane are also important features to be taken in account.
Collapse
Affiliation(s)
- Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Nuno M. M. Moura
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Cardote TAF, Barata JFB, Amador C, Alves E, Neves MGPMS, Cavaleiro JAS, Cunha Â, Almeida A, Faustino MAF. Evaluation of meso-substituted cationic corroles as potential antibacterial agents. AN ACAD BRAS CIENC 2018; 90:1175-1185. [PMID: 29873668 DOI: 10.1590/0001-3765201820170824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022] Open
Abstract
Cationic derivatives of 5,10,15-tris[4-(pyridin-4-ylsulphanyl)-2,3,5,6-tetrafluorophenyl]-corrolategallium(III)pyridine and 5,10,15-tris[4-(pyridin-2-ylsulfanyl)-2,3,5,6-tetrafluorophenyl]-correlategallium(III)pyridine were synthesized and their photosensitizing properties against the naturally bioluminescent Gram-negative bacterium Allivibrio fischeri were evaluated. The cationic corrole derivatives exhibited antibacterial activity at micromolar concentrations against this Gram-negative bacterium strain.
Collapse
Affiliation(s)
| | | | - Carolina Amador
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Eliana Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | - Ângela Cunha
- Centro de Estudos do Ambiente e do Mar, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Centro de Estudos do Ambiente e do Mar, Department of Biology, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
10
|
da Silva RN, Cunha Â, Tomé AC. Phthalocyanine–sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. Eur J Med Chem 2018; 154:60-67. [DOI: 10.1016/j.ejmech.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
11
|
Branco TM, Valério NC, Jesus VIR, Dias CJ, Neves MG, Faustino MA, Almeida A. Single and combined effects of photodynamic therapy and antibiotics to inactivate Staphylococcus aureus on skin. Photodiagnosis Photodyn Ther 2018; 21:285-293. [DOI: 10.1016/j.pdpdt.2018.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
|
12
|
Alizai PH, Bertram L, Fragoulis A, Wruck CJ, Kroy DC, Klinge U, Neumann UP, Schmeding M. In vivo imaging of antioxidant response element activity during liver regeneration after partial hepatectomy. J Surg Res 2016; 206:525-535. [DOI: 10.1016/j.jss.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/03/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023]
|
13
|
dos Santos KF, da Silva RJ, Romio KB, Souto PC, Silva JR, de Souza NC. Spray layer-by-layer films for photodynamic inactivation. Photodiagnosis Photodyn Ther 2016; 15:197-201. [DOI: 10.1016/j.pdpdt.2016.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022]
|
14
|
Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagnosis Photodyn Ther 2016; 15:202-12. [PMID: 27444886 DOI: 10.1016/j.pdpdt.2016.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Widespread resistance to antimicrobial agents has led to a dearth of therapeutic choices in treating Acinetobacter baumannii infections, leading to new strategies for treatment being needed. We evaluated the effects of photodynamic therapy (PDT) as an alternative antimicrobial modality on the virulence features of cell-surviving PDT. MATERIALS AND METHODS To determine the sublethal PDT (sPDT), a colistin-resistant, extensively drug-resistant A. baumannii (CR-XDR-AB) clinical isolate and A. baumannii and ATCC 19606 strains, photosensitized with toluidine blue O (TBO), were irradiated with light emitting diodes, following bacterial viability measurements. The biofilm formation ability, outer membrane (OM) integrity, and antimicrobial susceptibility profiles were assessed for cell-surviving PDT. The effects of sPDT on the expression of virulent genes were evaluated by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS sPDT resulted in the reduction of the biofilm formation capacity, and its metabolic activity in strains. The OM permeability and efflux pump inhibition of the sPDT-treated CR-XDR-AB cells were increased; however, there was no significant change in OM integrity in ATCC 19606 strain after sPDT. sPDT reduced the minimum inhibitory concentrations of the most tested antimicrobials by ≥2-fold in CR-XDR-AB. lpsB, blsA, and dnaK were upregulated after the strains were treated with sPDT; however, a reduction in the expression of csuE, epsA, and abaI was observed in the treated strains after sPDT. CONCLUSION The susceptibility of CR-XDR-AB to a range of antibiotics was enhanced following sPDT. The virulence of strains is reduced in cells surviving PDT with TBO, and this may have potential implications of PDT for the treatment of A. baumannii infections.
Collapse
|
15
|
Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus. Int J Antimicrob Agents 2015; 46:713-7. [DOI: 10.1016/j.ijantimicag.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022]
|
16
|
Jia K, Ionescu RE. Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 154:19-45. [PMID: 25981856 DOI: 10.1007/10_2015_324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
: Bioluminescence is light production by living organisms, which can be observed in numerous marine creatures and some terrestrial invertebrates. More specifically, bacterial bioluminescence is the "cold light" produced and emitted by bacterial cells, including both wild-type luminescent and genetically engineered bacteria. Because of the lively interplay of synthetic biology, microbiology, toxicology, and biophysics, different configurations of whole-cell biosensors based on bacterial bioluminescence have been designed and are widely used in different fields, such as ecotoxicology, food toxicity, and environmental pollution. This chapter first discusses the background of the bioluminescence phenomenon in terms of optical spectrum. Platforms for bacterial bioluminescence detection using various techniques are then introduced, such as a photomultiplier tube, charge-coupled device (CCD) camera, micro-electro-mechanical systems (MEMS), and complementary metal-oxide-semiconductor (CMOS) based integrated circuit. Furthermore, some typical biochemical methods to optimize the analytical performances of bacterial bioluminescent biosensors/assays are reviewed, followed by a presentation of author's recent work concerning the improved sensitivity of a bioluminescent assay for pesticides. Finally, bacterial bioluminescence as implemented in eukaryotic cells, bioluminescent imaging, and cancer cell therapies is discussed.
Collapse
Affiliation(s)
- Kun Jia
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France
| | - Rodica Elena Ionescu
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France.
| |
Collapse
|
17
|
Silva YJ, Costa L, Pereira C, Cunha Â, Calado R, Gomes NCM, Almeida A. Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microb Biotechnol 2014; 7:401-13. [PMID: 24841213 PMCID: PMC4229321 DOI: 10.1111/1751-7915.12090] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022] Open
Abstract
Aquaculture facilities worldwide continue to experience significant economic losses because of disease caused by pathogenic bacteria, including multidrug-resistant strains. This scenario drives the search for alternative methods to inactivate pathogenic bacteria. Phage therapy is currently considered as a viable alternative to antibiotics for inactivation of bacterial pathogens in aquaculture systems. While phage therapy appears to represent a useful and flexible tool for microbiological decontamination of aquaculture effluents, the effect of physical and chemical properties of culture waters on the efficiency of this technology has never been reported. The present study aimed to evaluate the effect of physical and chemical properties of aquaculture waters (e.g. pH, temperature, salinity and organic matter content) on the efficiency of phage therapy under controlled experimental conditions in order to provide a basis for the selection of the most suitable protocol for subsequent experiments. A bioluminescent genetically transformed Escherichia coli was selected as a model microorganism to monitor real-time phage therapy kinetics through the measurement of bioluminescence, thus avoiding the laborious and time-consuming conventional method of counting colony-forming units (CFU). For all experiments, a bacterial concentration of ≈ 10(5) CFU ml(-1) and a phage concentration of ≈ 10(6-8) plaque forming unit ml(-1) were used. Phage survival was not significantly affected by the natural variability of pH (6.5-7.4), temperature (10-25 °C), salinity (0-30 g NaCl l(-1) ) and organic matter concentration of aquaculture waters in a temperate climate. Nonetheless, the efficiency of phage therapy was mostly affected by the variation of salinity and organic matter content. As the effectiveness of phage therapy increases with water salt content, this approach appears to be a suitable choice for marine aquaculture systems. The success of phage therapy may also be enhanced in non-marine systems through the addition of salt, whenever this option is feasible and does not affect the survival of aquatic species being cultured.
Collapse
Affiliation(s)
- Yolanda J Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
18
|
da Silva RN, Tomé AC, Tomé JPC, Neves MGPMS, Faustino MAF, Cavaleiro JAS, Oliveira A, Almeida A, Cunha Â. Photo-inactivation ofBacillusendospores: inter-specific variability of inactivation efficiency. Microbiol Immunol 2012; 56:692-9. [DOI: 10.1111/j.1348-0421.2012.00493.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|