1
|
Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 Partly Inhibits Cell Proliferation via Direct Negative Regulation of FST Gene Expression. Front Genet 2021; 12:678667. [PMID: 34239543 PMCID: PMC8259742 DOI: 10.3389/fgene.2021.678667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-β superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.
Collapse
Affiliation(s)
- Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Wang J, Cheng J, Li Y, Yan H, Wu P, Zhu X, Liu L, Chen L, Chu W, Zhang J. Gene structure, recombinant expression and function characterization of Siniperca chuatsi Fsrp-3. JOURNAL OF FISH BIOLOGY 2019; 94:714-724. [PMID: 30756375 DOI: 10.1111/jfb.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
A full-length complementary (c)DNA sequence encoding follistatin-related protein 3 (fsrp-3) was determined from skeletal muscle in Chinese mandarin fish Siniperca chuatsi, its molecular structure was characterised and its function suggested. The putative structure of S. chuatsi Fsrp-3 contains an N-terminal domain and two follistatin domains. Quantitative reverse-transcription (qRT)-PCR assays revealed that fsrp-3 messenger (m)RNA was differentially expressed among assayed tissues and was highly expressed in heart and intestine. fsrp-3 mRNA exhibited increasing expression from the larval to the juvenile stage (500 g). To investigate the potential function of S. chuatsi fsrp-3 in muscle growth, we constructed a Fsrp-3 prokaryotic expression system and injected the purified Fsrp-3 fusion protein into the dorsal muscle. Fsrp-3 administration significantly influenced cross-section area, satellite cell activation frequency and nuclear density of S. chuatsi muscle fibres. Following Fsrp-3 treatment, the expression of myogenic regulatory factors was up-regulated and decline in the expression of myostatin was observed. The study revealed that Fsrp-3 may affect muscle growth by regulating myogenic regulatory factor expression and antagonizing myostatin function to initiate satellite cell activation and differentiation in S. chuatsi.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Jia Cheng
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Yulong Li
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Huiling Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ping Wu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Xin Zhu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Li Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lin Chen
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Wuying Chu
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioscience and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
3
|
Zhang Y, Yap KN, Williams TD, Swanson DL. Experimental Increases in Foraging Costs Affect Pectoralis Muscle Mass and Myostatin Expression in Female, but Not Male, Zebra Finches (Taeniopygia guttata). Physiol Biochem Zool 2018; 91:849-858. [DOI: 10.1086/697153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Follistatin could promote the proliferation of duck primary myoblasts by activating PI3K/Akt/mTOR signalling. Biosci Rep 2014; 34:BSR20140085. [PMID: 25200144 PMCID: PMC4201216 DOI: 10.1042/bsr20140085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FST (follistatin) is essential for skeletal muscle development, but the intracellular signalling networks that regulate FST-induced effects are not well defined. We sought to investigate whether FST promotes the proliferation of myoblasts through the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signalling. In the present study, we transfected the pEGFP-duFST plasmid and added PI3K and mTOR inhibitors to the medium of duck primary myoblasts. Then, we analysed the cellular phenotypic changes that occurred and analysed the expression of target genes. The results showed that FST promoted myoblast proliferation, induced the mRNA expression of PI3K, Akt, mTOR, 70-kDa ribosomal protein S6K (S6 kinase) and the protein expression of phospho-Akt (Thr308), mTOR, phospho-mTOR (serine 2448), phospho-S6K (Ser417), inhibited the mRNA expression of FoxO1, MuRF1 (muscle RING finger-1) and the protein expression of phospho-FoxO1 (Ser256). Moreover, we found that the overexpression of FST could alleviate the inhibitory effect of myoblast proliferation caused by the addition of LY294002, a PI3K inhibitor. Additionally, the overexpression of duck FST also relieved the inhibition of myoblast proliferation caused by the addition of rapamycin (an mTOR inhibitor) through PI3K/Akt/mTOR signalling. In light of the present results, we hypothesize that duck FST could promote myoblast proliferation, which is dependent on PI3K/Akt/mTOR signalling.
Collapse
|
5
|
Li X, Wang J, Liu H, Wang H, Sun L, Yang C, Li L, Zheng Y. Construction of a eukaryotic expression vector for pEGFP-FST and its biological activity in duck myoblasts. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Wei C, Li L, Su H, Xu L, Lu J, Zhang L, Liu W, Ren H, Du L. Identification of the crucial molecular events during the large-scale myoblast fusion in sheep. Physiol Genomics 2014; 46:429-40. [DOI: 10.1152/physiolgenomics.00184.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is well known that in sheep most myofibers are formed before birth; however, the crucial myogenic stage and the cellular and molecular mechanisms underpinning phenotypic variation of fetal muscle development remain to be ascertained. We used histological, microarray, and quantitative real-time PCR (qPCR) methods to examine the developmental characteristics of fetal muscle at 70, 85, 100, 120, and 135 days of gestation in sheep. We show that day 100 is an important checkpoint for change in muscle transcriptome and histomorphology in fetal sheep and that the period of 85–100 days is the vital developmental stage for large-scale myoblast fusion. Furthermore, we identified the cis-regulatory motifs for E2F1 or MEF2A in a list of decreasingly or increasingly expressed genes between 85 and 100 days, respectively. Further analysis demonstrated that the mRNA and phosphorylated protein levels of E2F1 and MEF2A significantly declined with myogenic progression in vivo and in vitro. qRT-PCR analysis indicated that PI3K and FST, as targets of E2F1, may be involved in myoblast differentiation and fusion and that downregulation of MEF2A contributes to transition of myofiber types by differential regulation of the target genes involved at the stage of 85–100 days. We clarify for the first time the timing of myofiber proliferation and development during gestation in sheep, which would be beneficial to meat sheep production. Our findings present a repertoire of gene expression in muscle during large-scale myoblast fusion at transcriptome-wide level, which contributes to elucidate the regulatory network of myogenic differentiation.
Collapse
Affiliation(s)
- Caihong Wei
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China; and
| | - Hongwei Su
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lingyang Xu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenzhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hangxing Ren
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Lixin Du
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Liu H, Zhang R, Li X, Sun L, Wang H, Yang C, Li L, Wang J, Xu F. Influence of recombinant duck follistatin protein on embryonic muscle development and gene expressions. J Anim Physiol Anim Nutr (Berl) 2013; 98:522-9. [PMID: 23957442 DOI: 10.1111/jpn.12104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
Abstract
Follistatin (FST) acts as a positive regulator of muscle development by inhibiting the activities and expression of myostatin. The recombinant duck FST protein was injected into hatching eggs and was also added to the medium of duck myoblast to study its role on duck embryonic muscle development and gene expressions. Duck embryo weight increased 3.49% (p > 0.05) in FST treatment group as compared with control group, but minor effects were found on leg or breast muscle weights of ducklings at 2 days post-hatching (p > 0.05). Relative expression of Pax7 was upregulated in both leg and breast muscle tissues (p < 0.05), while MyoD was only upregulated in leg muscle (p < 0.05), and Myf5 was only upregulated in breast muscle (p < 0.05). Relative expression of myostatin was downregulated in both muscle tissues researched (p < 0.05). In vitro studies also showed some maker genes relevant to protein synthesis and degradation, cells' proliferation and differentiation had significant changes in myoblasts after treated with FST. These results suggested that in ovo feeding of recombinant FST protein to duck hatching eggs had an effect on duck embryo development but have less roles on the duck embryonic muscle development.
Collapse
Affiliation(s)
- H Liu
- Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|