1
|
Lo SC, Tsai SY, Chang WH, Wu IC, Sou NL, Hung SHW, Chiang EPI, Huang CC. Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions. Int J Mol Sci 2023; 24:14080. [PMID: 37762380 PMCID: PMC10531626 DOI: 10.3390/ijms241814080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Shang-Yieng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Wei-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
2
|
He S, Zhong L, Duan J, Feng Y, Yang B, Yang L. Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. Front Microbiol 2017; 8:823. [PMID: 28588556 PMCID: PMC5440585 DOI: 10.3389/fmicb.2017.00823] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/21/2017] [Indexed: 01/23/2023] Open
Abstract
It has been reported that bacteria-mediated degradation of contaminants is a practical and innocuous wastewater treatment. In addition, iron oxide nanoparticles (NP) are wastewater remediation agents with great potentials due to their strong adsorption capacity, chemical inertness and superparamagnetism. Therefore, a combination of NPs and microbes could produce a very desirable alternative to conventional wastewater treatment. For this purpose, we first prepared Fe3O4/biochar nano-composites, followed by loading photosynthetic bacteria (PSB) onto them. It was found that Fe3O4/biochar nano-composites exhibited a high adsorption capacity for PSB (5.45 × 109 cells/g). The efficiency of wastewater pollutants removal by this PSB/Fe3O4/biochar agent was then analyzed. Our results indicated that when loaded onto Fe3O4/biochar nano-composites, PSB’s nutrient removal capability was significantly enhanced (P < 0.05). This agent removed 83.1% of chemical oxygen demand, 87.5% of NH4+, and 92.1% of PO43- from the wastewater in our study. Our experiments also demonstrated that such composites are outstanding recyclable agents. Their nutrient removal capability remained effective even after five cycles. In conclusion, we found the PSB/Fe3O4/biochar composites as a very promising material for bioremediation in the wastewater treatment.
Collapse
Affiliation(s)
- Shiying He
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Linghao Zhong
- Department of Chemistry, Pennsylvania State University, Mont Alto, PAUnited States
| | - Jingjing Duan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Bei Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Linzhang Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|
3
|
Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0045-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
4
|
Photosynthetic approaches to chemical biotechnology. Curr Opin Biotechnol 2013; 24:1031-6. [DOI: 10.1016/j.copbio.2013.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/27/2022]
|