1
|
Anthony WE, Geng W, Diao J, Carr RR, Wang B, Ning J, Moon TS, Dantas G, Zhang F. Increased triacylglycerol production in Rhodococcus opacus by overexpressing transcriptional regulators. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:83. [PMID: 38898475 PMCID: PMC11186279 DOI: 10.1186/s13068-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Lignocellulosic biomass is currently underutilized, but it offers promise as a resource for the generation of commercial end-products, such as biofuels, detergents, and other oleochemicals. Rhodococcus opacus PD630 is an oleaginous, Gram-positive bacterium with an exceptional ability to utilize recalcitrant aromatic lignin breakdown products to produce lipid molecules such as triacylglycerols (TAGs), which are an important biofuel precursor. Lipid carbon storage molecules accumulate only under growth-limiting low nitrogen conditions, representing a significant challenge toward using bacterial biorefineries for fuel precursor production. In this work, we screened overexpression of 27 native transcriptional regulators for their abilities to improve lipid accumulation under nitrogen-rich conditions, resulting in three strains that accumulate increased lipids, unconstrained by nitrogen availability when grown in phenol or glucose. Transcriptomic analyses revealed that the best strain (#13) enhanced FA production via activation of the β-ketoadipate pathway. Gene deletion experiments confirm that lipid accumulation in nitrogen-replete conditions requires reprogramming of phenylalanine metabolism. By generating mutants decoupling carbon storage from low nitrogen environments, we move closer toward optimizing R. opacus for efficient bioproduction on lignocellulosic biomass.
Collapse
Affiliation(s)
- Winston E Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Earth and Biological Systems Directorate, Pacific Northwest National Laboratory, Seattle, USA
| | - Weitao Geng
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Rhiannon R Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, MO, 63110, USA.
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Grechishnikova EG, Shemyakina AO, Novikov AD, Lavrov KV, Yanenko AS. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform. Crit Rev Biotechnol 2023; 43:835-850. [PMID: 35786136 DOI: 10.1080/07388551.2022.2091976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
Abstract
Rhodococcus bacteria are a fast-growing platform for biocatalysis, biodegradation, and biosynthesis, but not a platform for molecular biology. That is, Rhodococcus are not convenient for genetic engineering. One major issue for the engineering of Rhodococcus is the absence of a publicly available, curated, and commented collection of sequences of genetic parts that are functional in biotechnologically relevant species of Rhodococcus (R. erythropolis, R. rhodochrous, R. ruber, and R. jostii). Here, we present a collection of genetic parts for Rhodococcus (vector replicons, promoter regions, regulators, markers, and reporters) supported by a thorough analysis of their functionality. We also highlight and discuss the gaps in Rhodococcus-related genetic parts and techniques, which should be filled in order to make these bacteria a full-fledged molecular biology platform independent of Escherichia coli. We conclude that all major types of required genetic parts for Rhodococcus are available now, except multicopy replicons. As for model Rhodococcus strains, there is a particular shortage of strains with high electrocompetence levels and strains designed for solving specific genetic engineering tasks. We suggest that these obstacles are surmountable in the near future due to an intensification of research work in the field of genetic techniques for non-conventional bacteria.
Collapse
Affiliation(s)
- Elena G Grechishnikova
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Anna O Shemyakina
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Andrey D Novikov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Konstantin V Lavrov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| | - Alexander S Yanenko
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, Russia
- NRC "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
4
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
5
|
Livieri AL, Colaccini F, Hernández MA, Gago G, Alvarez HM, Gramajo H, Rodriguez E. Genetic analysis of acyl-CoA carboxylases involved in lipid accumulation in Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12674-2. [PMID: 37439834 DOI: 10.1007/s00253-023-12674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
In actinomycetes, the acyl-CoA carboxylases, including the so-called acetyl-CoA carboxylases (ACCs), are biotin-dependent enzymes that exhibit broad substrate specificity and diverse domain and subunit arrangements. Bioinformatic analyses of the Rhodococcus jostii RHA1 genome found that this microorganism contains a vast arrange of putative acyl-CoA carboxylases domains and subunits. From the thirteen putative carboxyltransferase domains, only the carboxyltransferase subunit RO01202 and the carboxyltransferase domain present in the multidomain protein RO04222 are highly similar to well-known essential ACC subunits from other actinobacteria. Mutant strains in each of these genes showed that none of these enzymes is essential for R. jostii growth in rich or in minimal media with high nitrogen concentration, presumably because of their partial overlapping activities. A mutant strain in the ro04222 gene showed a decrease in triacylglycerol and mycolic acids accumulation in rich and minimal medium, highlighting the relevance of this multidomain ACC in the biosynthesis of these lipids. On the other hand, RO01202, a carboxyltransferase domain of a putative ACC complex, whose biotin carboxylase and biotin carboxyl carrier protein domain were not yet identified, was found to be essential for R. jostii growth only in minimal medium with low nitrogen concentration. The results of this study have identified a new component of the TAG-accumulating machinery in the oleaginous R. jostii RHA1. While non-essential for growth and TAG biosynthesis in RHA1, the activity of RO04222 significantly contributes to lipogenesis during single-cell oil production. Furthermore, this study highlights the high functional diversity of ACCs in actinobacteria, particularly regarding their essentiality under different environmental conditions. KEY POINTS: • R. jostii possess a remarkable heterogeneity in their acyl-carboxylase complexes. • RO04222 is a multidomain acetyl-CoA carboxylase involved in lipid accumulation. • RO01202 is an essential carboxyltransferase only at low nitrogen conditions.
Collapse
Affiliation(s)
- Andrea L Livieri
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Facundo Colaccini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martin A Hernández
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Gabriela Gago
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor M Alvarez
- Instituto de Biociencias de La Patagonia, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco y CONICET, Comodoro Rivadavia, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
6
|
Thi Mo L, Irina P, Natalia S, Irina N, Lenar A, Andrey F, Ekaterina A, Sergey A, Olga P. Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms 2022; 10:microorganisms10081594. [PMID: 36014013 PMCID: PMC9416576 DOI: 10.3390/microorganisms10081594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to reveal the peculiarities of the adaptation of rhodococci to hydrophobic hydrocarbon degradation at low temperatures when the substrate was in solid states. The ability of actinobacteria Rhodococcus erythropolis (strains X5 and S67) to degrade hexadecane at 10 °C (solid hydrophobic substrate) and 26 °C (liquid hydrophobic substrate) is described. Despite the solid state of the hydrophobic substrate at 10 °C, bacteria demonstrate a high level of its degradation (30–40%) within 18 days. For the first time, we show that specialized cellular structures are formed during the degradation of solid hexadecane by Rhodococcus at low temperatures: intracellular multimembrane structures and surface vesicles connected to the cell by fibers. The formation of specialized cellular structures when Rhodococcus bacteria are grown on solid hexadecane is an important adaptive trait, thereby contributing to the enlargement of a contact area between membrane-bound enzymes and a hydrophobic substrate.
Collapse
Affiliation(s)
- Luong Thi Mo
- Department of Biotechnology, Tula State University, Prospekt Lenina 92, 300012 Tula, Russia
- Russian-Vietnamese Tropical Research and Technology Center (Southern Branch), No. 1–3, 3 Thang 2 (the 3rd of February) Street, 11th Ward, District 10, Ho Chi Minh City 740500, Vietnam
| | - Puntus Irina
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Suzina Natalia
- Laboratory of Microbial Cytology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Nechaeva Irina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Akhmetov Lenar
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Filonov Andrey
- Laboratory of Plasmid Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences—A Separate Subdivision of Federal State Budget Institution of Science, Federal Research Centre, Pushchino Scientific Center of Biological Research of Russian Academy of Sciences, Prospekt Nauki 5, 142290 Pushchino, Russia
| | - Akatova Ekaterina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Alferov Sergey
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Ponamoreva Olga
- Department of Biotechnology, Tula State University, Prospekt Lenina 92, 300012 Tula, Russia
- Correspondence:
| |
Collapse
|
7
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
8
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
9
|
Suzina NE, Sorokin VV, Polivtseva VN, Klyueva VV, Emelyanova EV, Solyanikova IP. From Rest to Growth: Life Collisions of Gordonia polyisoprenivorans 135. Microorganisms 2022; 10:465. [PMID: 35208919 PMCID: PMC8879720 DOI: 10.3390/microorganisms10020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the process of evolution, living organisms develop mechanisms for population preservation to survive in unfavorable conditions. Spores and cysts are the most obvious examples of dormant forms in microorganisms. Non-spore-forming bacteria are also capable of surviving in unfavorable conditions, but the patterns of their behavior and adaptive reactions have been studied in less detail compared to spore-forming organisms. The purpose of this work was to study the features of transition from dormancy to active vegetative growth in one of the non-spore-forming bacteria, Gordonia polisoprenivorans 135, which is known as a destructor of such aromatic compounds as benzoate, 3-chlorobenzoate, and phenol. It was shown that G. polyisoprenivorans 135 under unfavorable conditions forms cyst-like cells with increased thermal resistance. Storage for two years does not lead to complete cell death. When the cells were transferred to fresh nutrient medium, visible growth was observed after 3 h. Immobilized cells stored at 4 °C for at least 10 months regenerated their metabolic activity after only 30 min of aeration. A study of the ultrathin organization of resting cells by transmission electron microscopy combined with X-ray microanalysis revealed intracytoplasmic electron-dense spherical membrane ultrastructures with significant similarity to previously described acidocalcisomas. The ability of some resting G. polyisoprenivorans 135 cells in the population to secrete acidocalcisome-like ultrastructures into the extracellular space was also detected. These structures contain predominantly calcium (Ca) and, to a lesser extent, phosphorus (P), and are likely to serve as depots of vital macronutrients to maintain cell viability during resting and provide a quick transition to a metabolically active state under favorable conditions. The study revealed the features of transitions from active growth to dormant state and vice versa of non-spore-forming bacteria G. polyisoprenivorans 135 and the possibility to use them as the basis of biopreparations with a long shelf life.
Collapse
Affiliation(s)
- Nataliya E. Suzina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Vladimir V. Sorokin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia;
| | - Valentina N. Polivtseva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Violetta V. Klyueva
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| | - Elena V. Emelyanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Inna P. Solyanikova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| |
Collapse
|
10
|
Donini E, Firrincieli A, Cappelletti M. Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol (Praha) 2021; 66:701-713. [PMID: 34215934 PMCID: PMC8449775 DOI: 10.1007/s12223-021-00892-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/12/2021] [Indexed: 11/04/2022]
Abstract
Rhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.
Collapse
Affiliation(s)
- Eva Donini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
11
|
Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, Wong HW, Shao Z, Xie D. Microbial synthesis of wax esters. Metab Eng 2021; 67:428-442. [PMID: 34391890 DOI: 10.1016/j.ymben.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/27/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7-4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Le Zhao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Peng Yu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Carmen Lopez
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA.
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
12
|
Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021; 26:molecules26164871. [PMID: 34443455 PMCID: PMC8401914 DOI: 10.3390/molecules26164871] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Collapse
|
13
|
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567-8594. [PMID: 32918579 PMCID: PMC7502451 DOI: 10.1007/s00253-020-10861-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. KEY POINTS: • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance. Graphical abstract.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, Calgary University, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Alvarez HM, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS. Insights into the Metabolism of Oleaginous Rhodococcus spp. Appl Environ Microbiol 2019; 85:e00498-19. [PMID: 31324625 PMCID: PMC6715851 DOI: 10.1128/aem.00498-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Some species belonging to the Rhodococcus genus, such as Rhodococcus opacus, R. jostii, and R. wratislaviensis, are known to be oleaginous microorganisms, since they are able to accumulate triacylglycerols (TAG) at more than 20% of their weight (dry weight). Oleaginous rhodococci are promising microbial cell factories for the production of lipids to be used as fuels and chemicals. Cells could be engineered to create strains capable of producing high quantities of oils from industrial wastes and a variety of high-value lipids. The comprehensive understanding of carbon metabolism and its regulation will contribute to the design of a reliable process for bacterial oil production. Bacterial oleagenicity requires an integral configuration of metabolism and regulatory processes rather than the sole existence of an efficient lipid biosynthesis pathway. In recent years, several studies have been focused on basic aspects of TAG biosynthesis and accumulation using R. opacus PD630 and R. jostii RHA1 strains as models of oleaginous bacteria. The combination of results obtained in these studies allows us to propose a metabolic landscape for oleaginous rhodococci. In this context, this article provides a comprehensive and integrative view of different metabolic and regulatory attributes and innovations that explain the extraordinary ability of these bacteria to synthesize and accumulate TAG. We hope that the accessibility to such information in an integrated way will help researchers to rationally select new targets for further studies in the field.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - O Marisa Herrero
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Martín A Hernández
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P Lanfranconi
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| | - Maria S Villalba
- Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|
15
|
Anthony WE, Carr RR, DeLorenzo DM, Campbell TP, Shang Z, Foston M, Moon TS, Dantas G. Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:192. [PMID: 31404385 PMCID: PMC6683499 DOI: 10.1186/s13068-019-1535-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 05/09/2023]
Abstract
The current extraction and use of fossil fuels has been linked to extensive negative health and environmental outcomes. Lignocellulosic biomass-derived biofuels and bioproducts are being actively considered as renewable alternatives to the fuels, chemicals, and materials produced from fossil fuels. A major challenge limiting large-scale, economic deployment of second-generation biorefineries is the insufficient product yield, diversity, and value that current conversion technologies can extract from lignocellulose, in particular from the underutilized lignin fraction. Rhodococcus opacus PD630 is an oleaginous gram-positive bacterium with innate catabolic pathways and tolerance mechanisms for the inhibitory aromatic compounds found in depolymerized lignin, as well as native or engineered pathways for hexose and pentose sugars found in the carbohydrate fractions of biomass. As a result, R. opacus holds potential as a biological chassis for the conversion of lignocellulosic biomass into biodiesel precursors and other value-added products. This review begins by examining the important role that lignin utilization will play in the future of biorefineries and by providing a concise survey of the current lignin conversion technologies. The genetic machinery and capabilities of R. opacus that allow the bacterium to tolerate and metabolize aromatic compounds and depolymerized lignin are also discussed, along with a synopsis of the genetic toolbox and synthetic biology methods now available for engineering this organism. Finally, we summarize the different feedstocks that R. opacus has been demonstrated to consume, and the high-value products that it has been shown to produce. Engineered R. opacus will enable lignin valorization over the coming years, leading to cost-effective conversion of lignocellulose into fuels, chemicals, and materials.
Collapse
Affiliation(s)
- Winston E. Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Rhiannon R. Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tayte P. Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Zeyu Shang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
| |
Collapse
|
16
|
Hernández MA, Alvarez HM. Increasing lipid production using an NADP +-dependent malic enzyme from Rhodococcus jostii. MICROBIOLOGY-SGM 2018; 165:4-14. [PMID: 30372408 DOI: 10.1099/mic.0.000736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The occurrence of NADP+-dependent malic enzymes (NADP+-MEs) in several Rhodococcus strains was analysed. The NADP+-ME number in Rhodococcus genomes seemed to be a strain-dependent property. Total NADP+-ME activity increased by 1.8- and 2.6-fold in the oleaginous Rhodococcus jostii RHA1 and Rhodococcus opacus PD630 strains during cultivation under nitrogen-limiting conditions. Total NADP+-ME activity inhibition by sesamol resulted in a significant decrease of the cellular biomass and lipid production in oleaginous rhodococci. A non-redundant ME coded by the RHA1_RS44255 gene located in a megaplasmid (pRHL3) of R. jostii RHA1 was characterized and its heterologous expression in Escherichia coli resulted in a twofold increase in ME activity in an NADP+-dependent manner. The overexpression of RHA1_RS44255 in RHA1 and PD630 strains grown on glucose promoted an increase in total NADP+-ME activity and an up to 1.9-foldincrease in total fatty acid production without sacrificing cellular biomass. On the other hand, its expression in Rhodococcus fascians F7 grown on glycerol resulted in a 1.3-1.4-foldincrease in total fatty acid content. The results of this study confirmed the contribution of NADP+-MEs to TAG accumulation in oleaginous rhodococci and the utility of these enzymes as an alternative approach to increase bacterial oil production from different carbon sources.
Collapse
Affiliation(s)
- Martín A Hernández
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| | - Héctor M Alvarez
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|
17
|
Herrero OM, Villalba MS, Lanfranconi MP, Alvarez HM. Rhodococcus bacteria as a promising source of oils from olive mill wastes. World J Microbiol Biotechnol 2018; 34:114. [DOI: 10.1007/s11274-018-2499-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
|
18
|
Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R. A review on microbial lipids as a potential biofuel. BIORESOURCE TECHNOLOGY 2018; 259:451-460. [PMID: 29580729 DOI: 10.1016/j.biortech.2018.03.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/24/2023]
Abstract
Energy security, environmental concerns, and unstable oil prices have been the driving trifecta of demand for alternative fuels in the United States. The United States' dependence on energy resources, often from unstable oil-producing countries has created political insecurities and concerns. As we try to gain energy security, unconventional oil becomes more common, flooding the market, and causing the major downshift of the usual unstable oil prices. Meanwhile, consumption of fossil fuels and the consequent CO2 emissions have driven disruptions in the Earth's atmosphere and are recognized to be responsible for global climate change. While the significance of each of these three factors may fluctuate with global politics or new technologies, transportation energy will remain the prominent focus of multi-disciplined research. Bioenergy future depends on the price of oil. Current energy policy of the United States heavily favors petroleum industry. In this review, the current trend in microbial lipids as a potential biofuel is discussed.
Collapse
Affiliation(s)
- Sara A Shields-Menard
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Marta Amirsadeghi
- Department of Chemical and Materials Engineering, California State Polytechnic University, Pomona, CA 91768, USA
| | - W Todd French
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State 39762, USA
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
19
|
Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources. Front Microbiol 2018; 9:672. [PMID: 29706937 PMCID: PMC5906575 DOI: 10.3389/fmicb.2018.00672] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Elena Piacenza
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc A. Demeter
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
- Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Xu L, Wang L, Zhou XR, Chen WC, Singh S, Hu Z, Huang FH, Wan X. Stepwise metabolic engineering of Escherichia coli to produce triacylglycerol rich in medium-chain fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:177. [PMID: 29983740 PMCID: PMC6016142 DOI: 10.1186/s13068-018-1177-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) rich in medium-chain fatty acids (MCFAs, C10-14 fatty acids) are valuable feedstocks for biofuels and chemicals. Natural sources of TAGs rich in MCFAs are restricted to a limited number of plant species, which are unsuitable for mass agronomic production. Instead, the modification of seed or non-seed tissue oils to increase MCFA content has been investigated. In addition, microbial oils are considered as promising sustainable feedstocks for providing TAGs, although little has been done to tailor the fatty acids in microbial TAGs. RESULTS Here, we first assessed various wax synthase/acyl-coenzyme A:diacylglycerol acyltransferases, phosphatidic acid phosphatases, acyl-CoA synthetases as well as putative fatty acid metabolism regulators for producing high levels of TAGs in Escherichia coli. Activation of endogenous free fatty acids with tailored chain length via overexpression of the castor thioesterase RcFatB and the subsequent incorporation of such fatty acids into glycerol backbones shifted the TAG profile in the desired way. Metabolic and nutrient optimization of the engineered bacterial cells resulted in greatly elevated TAG levels (399.4 mg/L) with 43.8% MCFAs, representing the highest TAG levels in E. coli under shake flask conditions. Engineered cells were observed to contain membrane-bound yet robust lipid droplets. CONCLUSIONS We introduced a complete Kennedy pathway into non-oleaginous E. coli towards developing a bacterial platform for the sustainable production of TAGs rich in MCFAs. Strategies reported here illustrate the possibility of prokaryotic cell factories for the efficient production of TAGs rich in MCFAs.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
| | - Lian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
| | | | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | | | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
21
|
Lanfranconi MP, Alvarez HM. Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. J Biotechnol 2017; 260:67-73. [DOI: 10.1016/j.jbiotec.2017.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 01/30/2023]
|
22
|
Dávila Costa JS, Silva RA, Leichert L, Alvarez HM. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen. MICROBIOLOGY-SGM 2017; 163:343-354. [PMID: 28073401 DOI: 10.1099/mic.0.000424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.
Collapse
Affiliation(s)
- José Sebastián Dávila Costa
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina
| | - Roxana A Silva
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina
| | - Lars Leichert
- Ruhr-Universität Bochum, Medizinisches Proteom-Center, Redox Proteomics Group, Bochum, Germany
| | - Héctor M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia (Chubut), Argentina
| |
Collapse
|
23
|
Hernández MA, Lara J, Gago G, Gramajo H, Alvarez HM. The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci. Mol Microbiol 2016; 103:366-385. [DOI: 10.1111/mmi.13564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Martín A. Hernández
- INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia San Juan Bosco; Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000 Comodoro Rivadavia Chubut Argentina
| | - Julia Lara
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Ocampo y Esmeralda 2000 Rosario Santa Fe Argentina
| | - Gabriela Gago
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Ocampo y Esmeralda 2000 Rosario Santa Fe Argentina
| | - Hugo Gramajo
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Ocampo y Esmeralda 2000 Rosario Santa Fe Argentina
| | - Héctor M. Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia San Juan Bosco; Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000 Comodoro Rivadavia Chubut Argentina
| |
Collapse
|
24
|
Viljoen A, Blaise M, de Chastellier C, Kremer L. MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus. Mol Microbiol 2016; 102:611-627. [PMID: 27513974 DOI: 10.1111/mmi.13482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Slow growing pathogenic mycobacteria utilize host-derived lipids and accumulate large amounts of triacylglycerol (TAG) in the form of intracytoplasmic lipid inclusions (ILI), serving as a source of carbon and energy during prolonged infection. Mycobacterium abscessus is an emerging and rapidly growing species capable to induce severe and chronic pulmonary infections. However, whether M. abscessus, like Mycobacterium tuberculosis, possesses the machinery to acquire and store host lipids, remains unaddressed. Herein, we aimed at deciphering the contribution of the seven putative M. abscessus TAG synthases (Tgs) in TAG synthesis/accumulation thanks to a combination of genetic and biochemical techniques and a well-defined foamy macrophage (FM) model along with electron microscopy. Targeted gene deletion and functional complementation studies identified the MAB_3551c product, Tgs1, as the major Tgs involved in TAG production. Tgs1 exhibits a preference for long acyl-CoA substrates and site-directed mutagenesis demonstrated that His144 and Gln145 are essential for enzymatic activity. Importantly, in the lipid-rich intracellular context of FM, M. abscessus formed large ILI in a Tgs1-dependent manner. This supports the ability of M. abscessus to assimilate host lipids and the crucial role of Tgs1 in intramycobacterial TAG production, which may represent important mechanisms for long-term storage of a rich energy supply.
Collapse
Affiliation(s)
- Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Mickael Blaise
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,INSERM, CPBS, Montpellier, 34293, France
| |
Collapse
|
25
|
Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD. Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 2016; 6:24985. [PMID: 27126051 PMCID: PMC4850399 DOI: 10.1038/srep24985] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcripts were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δatf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.
Collapse
Affiliation(s)
- Sawsan Amara
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nicolas Seghezzi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hiroshi Otani
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carlos Diaz-Salazar
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Huang L, Zhao L, Zan X, Song Y, Ratledge C. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 2016; 38:999-1008. [PMID: 26956236 DOI: 10.1007/s10529-016-2072-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To explore the role of thioesterases in Rhodococcus opacus PD630 by endogenously overexpression in this bacteria for increased lipid production. RESULTS Overexpression of four thioesterases from R. opacus PD630 in E. coli led to a 2- to 8-fold increase in C16:1 and C18:1 fatty acids while, when overexpressed in R. opacus PD630, only two recombinants had significant effect on the quantities and compositions of total fatty acid. The contents of total fatty acids (FAs) in two recombinants, pJTE2 (OPAG_00508 thioesterase) and pJTE4 (WP_012687673.1 thioesterase), were 400-460 mg/g (CDW) which is 1.5 times of wild-type strain PD630 (300-350 mg/g CDW), and 20-30 % (w/w) more than that of the control strain PDpJAM2 (330-370 mg/g CDW). The contents of 17:1 and 18:1 fatty acids increased by about 27 and 35 %, respectively, in pJTE2 and by 35 and 20 %, respectively, in pJTE4 compared with the control strain. CONCLUSIONS The engineered strains showed improved production of lipid (as total fatty acids), and could also tailor the composition of the fatty acid profile when cultured in mineral salts medium using glucose as sole carbon source.
Collapse
Affiliation(s)
- Luxuan Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lina Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xinyi Zan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yuanda Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China. .,Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
| | - Colin Ratledge
- School of Biological Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
27
|
Lanfranconi MP, Alvarez AF, Alvarez HM. Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments. AMB Express 2015; 5:128. [PMID: 26228353 PMCID: PMC4520822 DOI: 10.1186/s13568-015-0128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated
the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained in seawater samples. All clones retrieved from marine sediments affiliated with gammaproteobacterial sequences and within them, most phylotypes formed a unique cluster related to putative WS/DGAT belonging to marine OM60 clade. In contrast, soils samples contained phylotypes only related to actinomycetes. Among them, phylotypes affiliated with representatives largely or recently reported as oleaginous bacteria, as well as with others considered as possible lipid-accumulating bacteria based on the analysis of their annotated genomes. Our study shows for the first time that the environment could contain a higher variety of ws/dgat than that reported from bacterial isolates. The results of this study highlight the relevance of the environment in a natural process such as the synthesis and accumulation of neutral lipids. Particularly, both marine sediments and soil may serve as a useful source for novel WS/DGAT with biotechnological interest.
Collapse
|
28
|
Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 2015; 33:86-97. [PMID: 26645801 DOI: 10.1016/j.ymben.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/04/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
Abstract
In this study, we metabolically engineered Corynebacterium glutamicum to produce triacylglycerols (TAGs) by completing and constraining a de novo TAG biosynthesis pathway. First, the plasmid pZ8_TAG4 was constructed which allows the heterologous expression of four genes: three (atf1 and atf2, encoding the diacylglycerol acyltransferase; pgpB, encoding the phosphatidic acid phosphatase) to complete the TAG biosynthesis pathway, and one gene (tadA) for lipid body assembly. Second, we applied four metabolic strategies to increase TAGs accumulation: (i) boosting precursor supply by heterologous expression of tesA (encoding thioesterase to form free fatty acid to reduce the feedback inhibition by acyl-ACP) and fadD (encoding acyl-CoA synthetase to enhance acyl-CoA supply), (ii) reduction of TAG degradation and precursor consumption by deleting four cellular lipases (cg0109, cg0110, cg1676 and cg1320) and the diacylglycerol kinase (cg2849), (iii) enhancement of fatty acid biosynthesis by deletion of fasR (cg2737, TetR-type transcriptional regulator of genes for the fatty acid biosynthesis), and (iv) elimination of the observed by-product formation of organic acids by blocking the acetic acid (pqo) and lactic acid production (ldh) pathways. The final strain (CgTesRtcEfasEbp/pZ8_TAG4) achieved a 7.5% yield of total fatty acids (2.38 ± 0.05 g/L intracellular fatty acids and 0.64 ± 0.09 g/L extracellular fatty acids) from 4% glucose in shake flasks after process optimization. This corresponds to maximum intracellular fatty acids content of 17.8 ± 0.5% of the dry cell.
Collapse
|
29
|
Röttig A, Zurek PJ, Steinbüchel A. Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 2015; 32:195-206. [PMID: 26460058 DOI: 10.1016/j.ymben.2015.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022]
Abstract
Microbially produced lipids like triacylglycerols or fatty acid ethyl esters are currently of great interest as fuel replacements or other industrially relevant compounds. They can even be produced by non-oleaginous microbes, like Escherichia coli, upon metabolic engineering. However, there is still much room for improvement regarding the yield for a competitive microbial production of lipids or biofuels. We genetically engineered E. coli by expressing fadD, fadR, pgpB, plsB and 'tesA in combination with atfA from Acinetobacter baylyi. A total fatty acid contents of up to 16% (w/w) was obtained on complex media, corresponding to approximately 9% (w/w) triacylglycerols and representing the highest titers of fatty acids and triacylglycerols obtained in E. coli under comparable cultivation conditions, so far. To evaluate further possibilities for an optimization of lipid production, ten promising bacterial wax ester synthase/acyl-Coenzyme A:diacylglycerol acyltransferases were tested and compared. While highest triacylglycerol storage was achieved with AtfA, the mutated variant AtfA-G355I turned out to be most suitable for fatty acid ethyl ester biosynthesis and enabled an accumulation of approx. 500 mg/L without external ethanol supplementation.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Paul Jannis Zurek
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
30
|
Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 2015; 120:28-39. [PMID: 26343555 DOI: 10.1016/j.biochi.2015.08.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Gram negative bacteria as well as Gram positive actinobacteria possess the ability to accumulate variable amounts of wax esters (WE) and/or triacylglycerols (TAG) under nitrogen limiting conditions. In recent years many advances have been made to obtain insight into neutral lipid biosynthesis and accumulation in prokaryotes. The clinical and industrial relevance of bacterial WE/TAG significantly promoted basic and applied research in this field. The recent integrated omic studies as well as the functional characterization of diverse genes are contributing to unravel the composition of the WE/TAG-accumulating machinery in bacteria. This will be a valuable data for designing new drugs against bacteria with clinical importance, such as Mycobacterium tuberculosis, or for transferring and optimizing lipid accumulation in bacterial hosts naturally unable to produce such lipids, such as Escherichia coli. In this article, recent investigations addressing WE/TAG biosynthesis and storage in prokaryotes are presented. A comprehensive view of the current knowledge on the different genes/proteins involved in WE/TAG biosynthesis is included.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico (CRIDECIT), Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, CIT-CHUBUT, CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| |
Collapse
|
31
|
Dávila Costa JS, Leichert L, Alvarez HM, Herrero OM. Label-free and redox proteomic analyses of the triacylglycerol-accumulating Rhodococcus jostii RHA1. Microbiology (Reading) 2015; 161:593-610. [DOI: 10.1099/mic.0.000028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2014; 42:219-27. [PMID: 25487758 DOI: 10.1007/s10295-014-1552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated triacylglycerol (TAG) accumulation and the in vivo ability to catalyze esters from exogenous short chain alcohol sources in Gordonia sp. strain KTR9. In this study, we investigated the effects that putative lipase (KTR9_0186) and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; KTR9_3844) gene knockouts had on TAG accumulation. Gene disruption of KTR9_0186 resulted in a twofold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75 % more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. In vitro assays with purified KTR9_3844 demonstrated WS/DGAT activity with short chain alcohols and C16 and C18 fatty acid Co-As. Collectively, these results indicate that Gordonia sp. KTR9 has a suitable tractable genetic background for TAG production as well as the enzymatic capacity to catalyze fatty acid esters from short chain alcohols.
Collapse
|
33
|
Muller EEL, Sheik AR, Wilmes P. Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 2014; 30:9-16. [DOI: 10.1016/j.copbio.2014.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/15/2022]
|
34
|
Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 2014; 99:2191-207. [PMID: 25213912 DOI: 10.1007/s00253-014-6002-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/28/2023]
Abstract
Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.
Collapse
Affiliation(s)
- Martín A Hernández
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria, 9000, Comodoro Rivadavia, Chubut, Argentina
| | | | | | | | | |
Collapse
|
35
|
Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology (Reading) 2014; 160:1523-1532. [DOI: 10.1099/mic.0.078477-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Members of the genus Rhodococcus are specialists in the biosynthesis and accumulation of triacylglycerols (TAGs). As no transport protein related to TAG metabolism has yet been characterized in these bacteria, we used the available genomic information of Rhodococcus jostii RHA1 to perform a broad survey of genes coding for putative lipid transporter proteins in this oleaginous micro-organism. Among the seven genes encoding putative lipid transporters, ro05645 (now called ltp1: lipid transporter protein) coding for an ATP-binding cassette protein was found clustered with others genes encoding enzymes catalysing the three putative acylation reactions of the Kennedy pathway for TAG synthesis. Overexpression of ltp1 in the RHA1 strain led to an increase of approximately sixfold and threefold in biomass and TAG production, respectively, when cells were cultivated on palmitic acid and oleic acid. Moreover, overexpression of ltp1 also promoted a significant increase in the uptake of a fluorescently labelled long-chain fatty acid (LCFA), as compared with the WT strain RHA1, and its further incorporation into the TAG fraction. Gluconate-grown cells showed increasing amounts of intracellular free fatty acids, but not of TAG, after overexpressing ltp1. Thus, for the first time to our knowledge, a transporter functionally related to TAG metabolism was identified in oleaginous rhodococci. Our results suggested that Ltp1 is an importer of LCFAs that plays a functional role in lipid homeostasis of R. jostii RHA1.
Collapse
|
36
|
Wang B, Rezenom YH, Cho KC, Tran JL, Lee DG, Russell DH, Gill JJ, Young R, Chu KH. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. BIORESOURCE TECHNOLOGY 2014; 161:162-70. [PMID: 24698742 PMCID: PMC7702278 DOI: 10.1016/j.biortech.2014.02.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 05/04/2023]
Abstract
Lignocellulosic biomass has been recognized as a promising feedstock for the fermentative production of biofuel. However, the pretreatment of lignocellulose generates a number of by-products, such as furfural, 5-hydroxylmethyl furfural (5-HMF), vanillin, vanillic acids and trans-p-coumaric acid (TPCA), which are known to inhibit microbial growth. This research explores the ability of Rhodococcus opacus PD630 to use lignocellulosic biomass for production of triacylglycerols (TAGs), a common lipid raw material for biodiesel production. This study reports that R. opacus PD630 can grow well in R2A broth in the presence of these model inhibitory compounds while accumulating TAGs. Furthermore, strain PD630 can use TPCA, vanillic acid, and vanillin as carbon sources, but can only use TPCA and vanillic acid for TAG accumulation. Strain PD630 can also grow rapidly on the hydrolysates of corn stover, sorghum, and grass to accumulate TAGs, suggesting that strain PD630 is well-suited for bacterial lipid production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Baixin Wang
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kun-Ching Cho
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Janessa L Tran
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3136, USA
| | - Jason J Gill
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3136, USA
| | - Ryland Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
37
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
MacEachran DP, Sinskey AJ. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact 2013; 12:104. [PMID: 24209886 PMCID: PMC3827869 DOI: 10.1186/1475-2859-12-104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gram-positive actinomycete Rhodococcus opacus is widely studied for its innate ability to store large amounts of carbon in the form of triacylglycerol (TAG). Several groups have demonstrated that R. opacus PD630 is capable of storing anywhere from 50 to 76% of its cell dry weight as TAG. While numerous studies have focused on phenomenological aspects of this process, few have sought to identify the underlying molecular and biochemical mechanisms responsible for the biosynthesis and storage of this molecule. RESULTS Herein we further our previous efforts to illuminate the black box that is lipid metabolism in actinomycetes using a genetic approach. Utilizing a simple, colorimetric genetic screen, we have identified a gene, referred to herein as tadD (triacylglycerol accumulation deficient), which is critical for TAG biosynthesis in R. opacus PD630. Furthermore, we demonstrate that the purified protein product of this gene is capable of oxidizing glyceraldehyde-3-phosphate, while simultaneously reducing NAD(P)+ to NAD(P)H. Supporting this biochemical data, we observed that the ratio of NAD(P)H to NAD(P)+ is elevated in wildtype cultures grown under lipid production conditions as compared to cultures grown under vegetative growth conditions, while the mutant strain demonstrated no change irrespective of growth conditions. Finally, we demonstrate that over-expressing a putative phosphorylative glyceraldehyde-3-phosphate dehydrogenase leads to decreased TAG production during growth on TAG accumulation conditions. CONCLUSION Taken together, the data support the identification of a key metabolic branch point separating vegetative growth and lipid accumulation lifestyles in Rhodococcus.
Collapse
Affiliation(s)
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street Bldg, 68-370, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Chen Y, Ding Y, Yang L, Yu J, Liu G, Wang X, Zhang S, Yu D, Song L, Zhang H, Zhang C, Huo L, Huo C, Wang Y, Du Y, Zhang H, Zhang P, Na H, Xu S, Zhu Y, Xie Z, He T, Zhang Y, Wang G, Fan Z, Yang F, Liu H, Wang X, Zhang X, Zhang MQ, Li Y, Steinbüchel A, Fujimoto T, Cichello S, Yu J, Liu P. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res 2013; 42:1052-64. [PMID: 24150943 PMCID: PMC3902926 DOI: 10.1093/nar/gkt932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhodococcus opacus strain PD630 (R. opacus PD630), is an oleaginous bacterium, and also is one of few prokaryotic organisms that contain lipid droplets (LDs). LD is an important organelle for lipid storage but also intercellular communication regarding energy metabolism, and yet is a poorly understood cellular organelle. To understand the dynamics of LD using a simple model organism, we conducted a series of comprehensive omics studies of R. opacus PD630 including complete genome, transcriptome and proteome analysis. The genome of R. opacus PD630 encodes 8947 genes that are significantly enriched in the lipid transport, synthesis and metabolic, indicating a super ability of carbon source biosynthesis and catabolism. The comparative transcriptome analysis from three culture conditions revealed the landscape of gene-altered expressions responsible for lipid accumulation. The LD proteomes further identified the proteins that mediate lipid synthesis, storage and other biological functions. Integrating these three omics uncovered 177 proteins that may be involved in lipid metabolism and LD dynamics. A LD structure-like protein LPD06283 was further verified to affect the LD morphology. Our omics studies provide not only a first integrated omics study of prokaryotic LD organelle, but also a systematic platform for facilitating further prokaryotic LD research and biofuel development.
Collapse
Affiliation(s)
- Yong Chen
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China, University of the Chinese Academy of Sciences, Beijing 100049, China, Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, Department of Histology and Embryology, University of South China, Hengyang Hunan Province 421001, China, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, School of Applied Mathematics, Central University of Finance and Economics, Beijing 102206, China, Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas at Dallas, Dallas, TX 75083-0688, USA, Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Corrensstrasse 3, D-48149 Münster, Germany, Environmental Sciences Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa, Nagoya 466-8550, Japan and School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|